
Task Function Module or TFM

TFM item module (task folder)

TFM task module (task folder)

TFM API module (API folder)

TFM data module (data folder)

Model-View-Controller or MVC

MVC design pattern vs TFM design pattern or framework

MVC deisgn pattern TFM design pattern or framework

Limited to one class per file Multiple classes per file as the recommended practice

Less flexible coding style - Does not work without
properOO encapsulation

More flexible coding style - Can work withoutOO
encapsulation (eg, using functions as plugins)

May not support multi-tasking and workload sharing
across different servers

Supports multi-tasking and workload sharing across different
servers or server clusters

Security policy must be implemented Default security policy via the TFM API module

May become difficult to manage as the program
becomes larger with many code files

Few code files per TFM , therefore easy to manage

Support adding of graphical user interface by default Does not support adding of graphical user interface by default

MVC can become complex Follows the KISS principle for simplicity

Typically allows one programming language only Allows multiple programming languages such as PHP for the
API module, and Python for the task module

Controller
The controller accepts client
requests
The controller sets the model for the
view. The view gets the model via
the controller
The controller calls the view to
display data

View
The view gets the model been
created and set by the
controller, and pushes the data
to the template to be displayed

Model
The model interacts with the
database to save, insert,
update and delete data.

Database
The database stores data

item_IMPORT
Item_IMPORT file contains
modules and variables to
be used in other files. eg
from selenium import *
We may also put all of our
variables in this file if we
don't want to create
separate files for each
variable type (eg, SQL,
LINUX..etc)

item_SQL
All SQL commands to be
used are listed here, eg:
sql_select = "SELECT *
FROM Customers;"

item_CENTOS
AllLinux centos command
should be listed here, eg
cmd_list_files = " ls -a"

data/RAW
In TFM , RAW data usually
refers to data to be
processed by the program,
eg emails not yet sent and
logged

data/COOKED
In TFM , COOKED data
usually refers to data
already processed or
logged.eg emails already
sent and logged

core_TASK
Classes that organize data
lists as tasks
The classes are to be
called by the
task_FACADE

plg _TASK
Functions to create and to
process data lists
The 2 types ofplugins are
TFM plugins and custom
plugins

facade_TASK
A list of tasks to be
selected and executed by
client requests.
Each task may consists of
executing 1 or more class
methods

plg _API
API_allowed_IP -> Checks IP address of the client
that sent the http requests

Other security plugins may be added, such as
requiring a password parameter to be included in
the url

API_get_request
Gets the http request and then calls
task_FACADE to execute 1 or more tasks or
class methods.Http://node_ ip + TFM_task + TFM_task_actionMultiple simultaneous http

requests

We may have folders in the task folder for the two plugin types,
where each plugin type folder has a list of plugin code files. The
plugin type folders may be organized as follows:

-plg _TFM (TFM default plugins)
--plg _Dt.py
--plg _Dir.py
--plg _Html.py
--plg _Regx,py
--plg _Mysql.py
--plg _Sqlite.py
--plg _Selenium,py
--plg _Str.py
--plg _Txt.py
--plg _Csv.py
--plg _Linux.py

-plg _CUSTOM (custom plugins)
--plg _My_plugins.py
--plg _Dave_plugins.py

Custom plugins may be created by importing TFM default plugins
as follows:

importsys
sys.path.append('../plg _TFM /')

NOTE: Since plg _TFM files contains defaultplugins only, the
plg _TFM plugin files do NOT need to import code or plugin from
any other files such as plg _CUSTOM files

We may have folders in the task folder for the
two plugin types, where each folder has a list of
plugin code files:

-plg _TFM (TFM plugins)
--plg _Dt.php
--plg _Dir.php
--plg _Html.php
--plg _Regx,php
--plg _Mysql.php
--plg _Sqlite.php
--plg _Str.php
--plg _Txt.php
--plg _Csv.php

-plg _CUSTOM (custom plugins)
--plg _My_plugins.php
--plg _Dave_plugins.php

Fig 1g

We may have a folder to store one or more core_TASK
code files.

For example, suppose we have multiple payment platforms
to be used to send and to receive payments from our
clients. Our core task files may be organized as follows:

-core_TASK
--core_PAYPAL.py
--core_STRIPE.py
--core_BRAINTREE.py
--core_ANZ_BANK.py
--core_COMM_BANK.py

Since core_TASK files may need to call one or more plugin
files to create core tasks, each plugin file may need to be
imported into the core task files as follows:

importsys
sys.path.append('../plg _CUSTOM/')
sys.path.append('../plg _TFM /')

The facade or task_router file which needs to call
one or more core task files may need to import each
core task file as well as the plugin files, as follows:

#must append ALL folder paths of the files to be
imported and used

importsys
sys.path.append('core_TASK/')
sys.path.append('plg _CUSTOM/')
sys.path.append('plg _TFM /')

