Fig 1g

MVC design pattern vs TFM design pattern or framework

MVC deisgn pattern

TFM design pattern or framework

Limited to one class per file

Multiple classes per file as the recommended practice

Less flexible coding style - Does not work without
proper OO encapsulation

More flexible coding style - Can work withoutOO
encapsulation (eg, using functions as plugins)

May not support multi-tasking and workload sharing
across different servers

Supports multi-tasking and workload sharing across different
servers or server clusters

Security policy must be implemented

Default security policy via the TFM APImodule

May become difficult to manage as the program
becomes larger with many code files

Few code files per TFM, therefore easy to manage

Support adding of graphical user interface by default

Does not support adding of graphical user interface by default

MVC can become complex

Follows the KISS principle for simplicity

Typically allows one programming language only

Allows multiple programming languages such as PHP for the
APImodule, and Python for the task module

Multiple simultaneous http
requests

Model-View-Controller or MVC

Controller

The controller accepts client
requests

The controller sets the model for the
[T = — |view. The view gets the model via

I the controller

|

|

|

The controller calls the view to
display data

Database Model

The database stores data

The model interacts with the
4 — — |database to save, insert,
update and delete data.

The view gets the model been
created and set by the

p-|controller, and pushes the data
to the template to be displayed

Task Function Module or TFM

TFM APImodule (APIfolder)

plg_API

APlallowed P -> Checks P address of the client
that sent the http requests

Other security plugins may be added, such as
requiring a password parameter to be included in

the url

APlget_request

Gets the http request and then calls

Http://node_ip + TFM _task + TFM_task action

task_FACADE to execute 1 or more tasks or
class methods. -

TFM data module (data folder)

data/RAW

data/COOKED

h TFM, RAW data usually
refers to data to be
processed by the program,
eg emails not yet sent and

h TFM, COOKED data
usually refers to data
already processed or
logged. eg emails already
sent and logged

logged

TFM item module (task folder)

item_IMPORT

item_SQL

TFM

task module (task folder)

facade_TASK

>

A list of tasks to be
selected and executed by
client requests.

Each task may consists of
executing 1 or more class
methods

Y

core_TASK

lists as tasks

&—The classes are to be

called by the
task_FACADE

Classes that organize data

A

plg_TASK

process data lists

plugins

Functions to create and to

A

The 2 types ofplugins are
TFM plugins and custom

Item_IMPORT file contains
modules and variables to
be used in other files. eg

from selenium import *

We may also put all of our
variables in this file if we
don't want to create
separate files for each
variable type (eg, SQL,
LINUX..etc)

All SQL commands to be
used are listed here, eg:

sqlselect = "SELECT *
FROM Customers;"

item_CENTOS

AllLinux centos command
should be listed here, eg

cmd_list_files ="ls -a"

We may have folders in the task folder for the
two plugin types, where each folder has a list of
plugin code files:

-plg _TFM (TFM plugins)
--plg _Dt.php

--plg _Dir.php

--plg _Html.php

--plg _Regx,php

--plg _Mysql.php

--plg _Sqlite.php

--plg _Str.php

--plg _Txt.php

--plg _Csv.php

-plg_CUSTOM (custom plugins)

--plg _My_plugins.php
--plg _Dave_plugins.php

The facade or task_router file which needs to call
one or more core task files may need to import each
core task file as well as the plugin files, as follows:

#must append ALL folder paths of the files to be

imported and used

importsys

sys.path.append(‘core_TASK/")
sys.path.append(plg_CUSTOM/")

sys.path.append(plg_TFM/")

-core_TASK
--core_PAYPAL.py
--core_STRIPE.py
--core_ BRAINTREE.py
--core_ANZ _BANK.py
--core_ COMM_BANK.py

importsys
sys.path.append('../plg_CUSTOM/")
sys.path.append('../plg_TFM /')

We may have a folder to store one or more core_ TASK
code files.

For example, suppose we have multiple payment platforms
to be used to send and to receive payments from our
clients. Our core task files may be organized as follows:

Since core_TASK files may need to call one or more plugin
files to create core tasks, each plugin file may need to be
imported into the core task files as follows:

--plg _Dt.py
--plg _Dir.py
--plg _Html.py
--plg _Regx py
--plg _Mysql.py
--plg _Sqlite.py

--plg _Str.py
--plg _Txt.py
--plg _Csv.py
--plg _Linux.py

--plg _Seleniumpy

We may have folders in the task folder for the two plugin types,
where each plugin type folder has a list of plugin code files. The
plugin type folders may be organized as follows:

-plg _TFM (TFM default plugins)

-plg_CUSTOM (custom plugins)

--plg _My_plugins.py
--plg _Dave_plugins.py

Custom plugins may be created by importing TFM default plugins
as follows:

importsys
sys.path.append('../plg_TFM /)

NOTE:Since plg_TFM files contains defaultplugins only, the
plg _TFM plugin files do NOT need to import code or plugin from
any other files such as plg _CUSTOM files




