
     hOI                         d Z ddgZddlZddlmZ ddlmZmZmZm	Z	m
Z
mZmZmZmZmZmZ ddlmZmZmZmZmZ dd	lmZ dd
lmZmZ dZ e ee          j                  Zd Z ddddddddddddddedfdZ!ddddddddeddfdZ"d Z#d Z$dS )a  
This module implements the Sequential Least Squares Programming optimization
algorithm (SLSQP), originally developed by Dieter Kraft.
See http://www.netlib.org/toms/733

Functions
---------
.. autosummary::
   :toctree: generated/

    approx_jacobian
    fmin_slsqp

approx_jacobian
fmin_slsqp    N)slsqp)zerosarraylinalgappendasfarrayconcatenatefinfosqrtvstackisfinite
atleast_1d   )OptimizeResult_check_unknown_options_prepare_scalar_function_clip_x_for_func_check_clip_x)approx_derivative)old_bound_to_new_arr_to_scalarzrestructuredtext enc                 R    t          || d||          }t          j        |          S )a  
    Approximate the Jacobian matrix of a callable function.

    Parameters
    ----------
    x : array_like
        The state vector at which to compute the Jacobian matrix.
    func : callable f(x,*args)
        The vector-valued function.
    epsilon : float
        The perturbation used to determine the partial derivatives.
    args : sequence
        Additional arguments passed to func.

    Returns
    -------
    An array of dimensions ``(lenf, lenx)`` where ``lenf`` is the length
    of the outputs of `func`, and ``lenx`` is the number of elements in
    `x`.

    Notes
    -----
    The approximation is done using forward differences.

    2-point)methodabs_stepargs)r   np
atleast_2d)xfuncepsilonr   jacs        T/var/www/html/Sam_Eipo/venv/lib/python3.11/site-packages/scipy/optimize/_slsqp_py.pyr   r   "   s5    6 D!I!%' ' 'C =     d   gư>c                 Z  
 ||}||||dk    ||d}d}|t          
fd|D                       z  }|t          
fd|D                       z  }|r|d||
dfz  }|r|d	||	
dfz  }t          | |
f|||d
|}|r%|d         |d         |d         |d         |d         fS |d         S )a/  
    Minimize a function using Sequential Least Squares Programming

    Python interface function for the SLSQP Optimization subroutine
    originally implemented by Dieter Kraft.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function.  Must return a scalar.
    x0 : 1-D ndarray of float
        Initial guess for the independent variable(s).
    eqcons : list, optional
        A list of functions of length n such that
        eqcons[j](x,*args) == 0.0 in a successfully optimized
        problem.
    f_eqcons : callable f(x,*args), optional
        Returns a 1-D array in which each element must equal 0.0 in a
        successfully optimized problem. If f_eqcons is specified,
        eqcons is ignored.
    ieqcons : list, optional
        A list of functions of length n such that
        ieqcons[j](x,*args) >= 0.0 in a successfully optimized
        problem.
    f_ieqcons : callable f(x,*args), optional
        Returns a 1-D ndarray in which each element must be greater or
        equal to 0.0 in a successfully optimized problem. If
        f_ieqcons is specified, ieqcons is ignored.
    bounds : list, optional
        A list of tuples specifying the lower and upper bound
        for each independent variable [(xl0, xu0),(xl1, xu1),...]
        Infinite values will be interpreted as large floating values.
    fprime : callable `f(x,*args)`, optional
        A function that evaluates the partial derivatives of func.
    fprime_eqcons : callable `f(x,*args)`, optional
        A function of the form `f(x, *args)` that returns the m by n
        array of equality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_eqcons should be sized as ( len(eqcons), len(x0) ).
    fprime_ieqcons : callable `f(x,*args)`, optional
        A function of the form `f(x, *args)` that returns the m by n
        array of inequality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ).
    args : sequence, optional
        Additional arguments passed to func and fprime.
    iter : int, optional
        The maximum number of iterations.
    acc : float, optional
        Requested accuracy.
    iprint : int, optional
        The verbosity of fmin_slsqp :

        * iprint <= 0 : Silent operation
        * iprint == 1 : Print summary upon completion (default)
        * iprint >= 2 : Print status of each iterate and summary
    disp : int, optional
        Overrides the iprint interface (preferred).
    full_output : bool, optional
        If False, return only the minimizer of func (default).
        Otherwise, output final objective function and summary
        information.
    epsilon : float, optional
        The step size for finite-difference derivative estimates.
    callback : callable, optional
        Called after each iteration, as ``callback(x)``, where ``x`` is the
        current parameter vector.

    Returns
    -------
    out : ndarray of float
        The final minimizer of func.
    fx : ndarray of float, if full_output is true
        The final value of the objective function.
    its : int, if full_output is true
        The number of iterations.
    imode : int, if full_output is true
        The exit mode from the optimizer (see below).
    smode : string, if full_output is true
        Message describing the exit mode from the optimizer.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'SLSQP' `method` in particular.

    Notes
    -----
    Exit modes are defined as follows ::

        -1 : Gradient evaluation required (g & a)
         0 : Optimization terminated successfully
         1 : Function evaluation required (f & c)
         2 : More equality constraints than independent variables
         3 : More than 3*n iterations in LSQ subproblem
         4 : Inequality constraints incompatible
         5 : Singular matrix E in LSQ subproblem
         6 : Singular matrix C in LSQ subproblem
         7 : Rank-deficient equality constraint subproblem HFTI
         8 : Positive directional derivative for linesearch
         9 : Iteration limit reached

    Examples
    --------
    Examples are given :ref:`in the tutorial <tutorial-sqlsp>`.

    Nr   )maxiterftoliprintdispepscallbackr'   c              3   $   K   | ]
}d |dV  dS )eqtypefunr   Nr'   .0cr   s     r%   	<genexpr>zfmin_slsqp.<locals>.<genexpr>   s-      IIQ4488IIIIIIr&   c              3   $   K   | ]
}d |dV  dS )ineqr2   Nr'   r5   s     r%   r8   zfmin_slsqp.<locals>.<genexpr>   s-      LLq6!T::LLLLLLr&   r1   )r3   r4   r$   r   r:   )r$   boundsconstraintsr!   r4   nitstatusmessage)tuple_minimize_slsqp)r"   x0eqconsf_eqconsieqcons	f_ieqconsr;   fprimefprime_eqconsfprime_ieqconsr   iteraccr,   r-   full_outputr#   r/   optsconsress             `          r%   r   r   D   sF   ` aK " "D D 	EIIII&IIIIIIDELLLLGLLLLLLD  #$x    # 	# #&>    # 	# $D 4fV&*4 4.24 4C 3xUSZXINN3xr&   Fc                 F  CDE t          |           |dz
  }|}|
C|	sd}t          |                                          E|t          |          dk    rt          j         t          j        fDnt          |          Dt	          j        EDd         Dd                   Et          |t                    r|f}ddd}t          |          D ]\  }}	 |d                                         }|dvrt          d|d         z            n_# t          $ r}t          d|z            |d}~wt          $ r}t          d	          |d}~wt          $ r}t          d
          |d}~ww xY wd|vrt          d|z            |                    d          }|CDfd} ||d                   }||xx         |d         ||                    dd          dfz  cc<   dddddddddddd}t#          t%          t          Efd|d         D                                 }t#          t%          t          Efd|d          D                                 }||z   }t'          d|g                                          }t          E          }|dz   }||z
  |z   |z   }d!|z  |z   |dz   z  ||z
  dz   |d"z   z  z   d"|z  z   ||z   ||z
  z  z   d"|z  z   |z   |dz   |z  d"z  z   d"|z  z   d!|z  z   d!|z  z   dz   }|} t+          |          }!t+          |           }"|t          |          dk    rvt	          j        |t.          #          }#t	          j        |t.          #          }$|#                    t          j                   |$                    t          j                   n#t'          d$ |D             t.                    }%|%j        d         |k    rt7          d%          t	          j        d&'          5  |%dddf         |%dddf         k    }&ddd           n# 1 swxY w Y   |&                                r/t          d(d)                    d* |&D                       z            |%dddf         |%dddf         }$}#t?          |%           }'t          j        |#|'dddf         <   t          j        |$|'dddf         <   tA          | E||
D+          }(tC          |(j"        D          })tC          |(j#        D          }*t'          dtH                    }+t'          |t.                    }t'          |tH                    },d}-t'          dt.                    }.t'          dt.                    }/t'          dt.                    }0t'          dt.                    }1t'          dt.                    }2t'          dt.                    }3t'          dt.                    }4t'          dt.                    }5t'          dt.                    }6t'          dt.                    }7t'          dtH                    }8t'          dtH                    }9t'          dtH                    }:t'          dtH                    };t'          dtH                    }<t'          dtH                    }t'          dtH                    }=t'          dtH                    }>|d"k    rtK          d,d-z              |)E          }?tM           |*E          d.          }@tO          E|          }AtQ          E||||||          }B	 tS          g ||E|#|$|?|A|@|B||,|+|!|"|.|/|0|1|2|3|4|5|6|7|8|9|:|;|<||=|>R   |+dk    r |)E          }?tO          E|          }A|+d/k    r.tM           |*E          d.          }@tQ          E||||||          }B|,|-k    rR| |t	          j*        E                     |d"k    r-tK          d0|,|(j+        |?tY          j-        |@          fz             t]          |+          dk    rntI          |,          }-|dk    rtK          |tI          |+                   d1z   t_          |+          z   d2z              tK          d3|?           tK          d4|,           tK          d5|(j+                   tK          d6|(j0                   tc          E|?|@dd/         tI          |,          |(j+        |(j0        tI          |+          |tI          |+                   |+dk    7	  	        S )8a  
    Minimize a scalar function of one or more variables using Sequential
    Least Squares Programming (SLSQP).

    Options
    -------
    ftol : float
        Precision goal for the value of f in the stopping criterion.
    eps : float
        Step size used for numerical approximation of the Jacobian.
    disp : bool
        Set to True to print convergence messages. If False,
        `verbosity` is ignored and set to 0.
    maxiter : int
        Maximum number of iterations.
    finite_diff_rel_step : None or array_like, optional
        If `jac in ['2-point', '3-point', 'cs']` the relative step size to
        use for numerical approximation of `jac`. The absolute step
        size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
        possibly adjusted to fit into the bounds. For ``method='3-point'``
        the sign of `h` is ignored. If None (default) then step is selected
        automatically.
    r   r   Nr'   )r1   r:   r3   zUnknown constraint type '%s'.z"Constraint %d has no type defined.z/Constraints must be defined using a dictionary.z#Constraint's type must be a string.r4   z&Constraint %d has no function defined.r$   c                       fd}|S )Nc                     t          |           } dv rt          | |          S t          | d|          S )N)r   z3-pointcs)r   r   rel_stepr;   r   )r   r   r   r;   )r   r   )r!   r   r#   finite_diff_rel_stepr4   r$   
new_boundss     r%   cjacz3_minimize_slsqp.<locals>.cjac_factory.<locals>.cjac%  sr    %a44A:::0a$:N8B D  D  D D  1a	:A8B D  D  D Dr&   r'   )r4   rW   r#   rU   r$   rV   s   ` r%   cjac_factoryz%_minimize_slsqp.<locals>.cjac_factory$  sA    
D 
D 
D 
D 
D 
D 
D 
D 
D r&   r   )r4   r$   r   z$Gradient evaluation required (g & a)z$Optimization terminated successfullyz$Function evaluation required (f & c)z4More equality constraints than independent variablesz*More than 3*n iterations in LSQ subproblemz#Inequality constraints incompatiblez#Singular matrix E in LSQ subproblemz#Singular matrix C in LSQ subproblemz2Rank-deficient equality constraint subproblem HFTIz.Positive directional derivative for linesearchzIteration limit reached)r   r                        	   c           	      T    g | ]$}t           |d          g|d         R            %S r4   r   r   r6   r7   r!   s     r%   
<listcomp>z#_minimize_slsqp.<locals>.<listcomp>G  sK     # # # #81U8A#:&	#:#:#:;; # # #r&   r1   c           	      T    g | ]$}t           |d          g|d         R            %S rc   rd   re   s     r%   rf   z#_minimize_slsqp.<locals>.<listcomp>I  sK     & & & $HAeHQ$;6$;$;$;<< & & &r&   r:   r[   rZ   )dtypec                 P    g | ]#\  }}t          |          t          |          f$S r'   )r   )r6   lus      r%   rf   z#_minimize_slsqp.<locals>.<listcomp>b  sA     , , , 1a &a((.*;*;< , , ,r&   zDSLSQP Error: the length of bounds is not compatible with that of x0.ignore)invalidz"SLSQP Error: lb > ub in bounds %s.z, c              3   4   K   | ]}t          |          V  d S )N)str)r6   bs     r%   r8   z"_minimize_slsqp.<locals>.<genexpr>m  s(      &>&>!s1vv&>&>&>&>&>&>r&   )r$   r   r#   rU   r;   z%5s %5s %16s %16s)NITFCOBJFUNGNORMg        rY   z%5i %5i % 16.6E % 16.6Ez    (Exit mode )z#            Current function value:z            Iterations:z!            Function evaluations:z!            Gradient evaluations:)	r!   r4   r$   r=   nfevnjevr>   r?   success)2r   r
   flattenlenr   infr   clip
isinstancedict	enumeratelower
ValueErrorKeyError	TypeErrorAttributeErrorgetsummapr   maxr   emptyfloatfillnanshape
IndexErrorerrstateanyjoinr   r   r   r4   gradintprintr	   _eval_constraint_eval_con_normalsr   copyrv   r   normabsro   ngevr   )Fr"   rB   r   r$   r;   r<   r*   r+   r,   r-   r.   r/   rU   unknown_optionsrJ   rK   rN   icconctypeerW   rX   
exit_modesmeqmieqmlann1mineqlen_wlen_jwwjwxlxubndsbnderrinfbndsfwrapped_funwrapped_gradmodemajitermajiter_prevalphaf0gsh1h2h3h4tt0toliexactinconsiresetitermxlinen2n3fxgr7   ar#   rV   r!   sF      `        `                                                      @@@r%   rA   rA      s
   8 ?+++Q;D
CG  	A ~V))vgrv&

%f--
 	:a=*Q-00A +t$$ &"ob!!D[)) +9 +9C	PK%%''E N** !@3v;!NOOO +  	M 	M 	M?"DEE1L 	2 	2 	2 * + +012 	J 	J 	JABBI	J EJKKK wwu~~<         <E
++D 	UE
 $!$!4!46 6 9 	9 =<<LB;;;JF/
1 
1J c# # # # #Dz# # # $ $ % %Cs3 & & & &V& & & ' ' ( (D 	d
A	1v				BAA 
QBGbL2ErT!VbdORVAXa001U7:BuHr#v;NNeqS!Ga<(*+A#.01!467d;=>?EFeA	vB ~V))Xau%%%Xau%%%

 , ,$*, , ,-24 4:a=A ; < < < [*** 	- 	-!!!Q$Z$qqq!t*,F	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- ::<< 	@A!YY&>&>v&>&>&>>>? @ @ @aaadT!!!Q$ZB 4..66!!!Q$<66!!!Q$< 
"$ss7K)3
5 
5 
5B
 #26:66K#BGZ88L C==D
U

CD#GL !UOOE	q%B	q%B	q%B	q%B	q%B	q%BaA	q%B
5//C1c]]F1c]]F1c]]F1c]]FC==D	q#B	q#B	q#B {{!$DDEEE
 
QB||A$$AD!!A!T2q!S$77A$ 	a 	 	a 	 	R 	 	Q 	 	1 	c 	7 	D 	! 	R 					!#	%'	)+	-.	02	47			$	&,	.2	 	 	 	 	 	 	
 199QB D))A2::||A,,A!!T2q!S$??A\!!#$$$ {{/7BG35v{1~~3G G H H H t99>>7||;$@ {{jT#&77#d))CcIJJJ3R888'111127;;;127;;;A21SbS6s7||!wRWSYY",SYY"7$!)N N N NsB   D
E)D**E)7EE)E$$E)8PP#&P#c                     |d         r"t           fd|d         D                       }nt          d          }|d         r"t           fd|d         D                       }nt          d          }t          ||f          }|S )Nr1   c           	      T    g | ]$}t           |d          g|d         R            %S rc   rd   r6   r   r!   s     r%   rf   z$_eval_constraint.<locals>.<listcomp>  sK     3 3 3 # 'zs5z!'Bc&k'B'B'BCC 3 3 3r&   r   r:   c           	      T    g | ]$}t           |d          g|d         R            %S rc   rd   r   s     r%   rf   z$_eval_constraint.<locals>.<listcomp>  sK     6 6 6!$ (
E
1(Cs6{(C(C(CDD 6 6 6r&   )r   r   )r!   rN   c_eqc_ieqr7   s   `    r%   r   r     s    Dz  3 3 3 3'+Dz3 3 3 4 4 QxxF|  6 6 6 6(,V6 6 6 7 7 a 	T5M""AHr&   c                     |d         r"t           fd|d         D                       }nt          ||f          }|d         r"t           fd|d         D                       }nt          ||f          }|dk    rt          ||f          }	nt          ||f          }	t          |	t          |dg          fd          }	|	S )Nr1   c                 :    g | ]} |d          g|d         R  S r$   r   r'   r   s     r%   rf   z%_eval_con_normals.<locals>.<listcomp>  sC     . . . "s5z!2c&k222 . . .r&   r:   c                 :    g | ]} |d          g|d         R  S r   r'   r   s     r%   rf   z%_eval_con_normals.<locals>.<listcomp>  sC     1 1 1 #E
13s6{333 1 1 1r&   r   r   )r   r   r   )
r!   rN   r   r   r   r   r   a_eqa_ieqr   s
   `         r%   r   r     s   Dz  . . . ."&t*. . . / / c1XF| ! 1 1 1 1#'<1 1 1 2 2 tQi   	Avv2q'NND%=!!Qr1g'++AHr&   )%__doc____all__numpyr   scipy.optimize._slsqpr   r   r   r   r	   r
   r   r   r   r   r   r   	_optimizer   r   r   r   r   _numdiffr   _constraintsr   r   __docformat__r   r.   _epsilonr   r   rA   r   r   r'   r&   r%   <module>r      s    l
+     ' ' ' ' ' '7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7' ' ' ' ' ' ' ' ' ' ' ' ' ' ( ' ' ' ' ' : : : : : : : : &4e !!  D !#T2T"#6d8	O O O Od $&4 "fQU 4dwN wN wN wNt  &    r&   