
    hL                        d dl mZmZ d dlZd dlmZ d dlmZ ddlm	Z	m
Z
 ddlmZ ddlmZmZ ddlmZ dd	lmZmZ dd
lmZ ddlmZ ddlmZ ddlmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$  G d de      Z% G d de!      Z& G d de      Z' G d de      Z( G d de"      Z) G d de       Z* G d de      Z+ G d de      Z,g dZ-y)     )CallableOptionalN)TransformersKwargs   )CacheDynamicCache)layer_type_validation)create_causal_mask!create_sliding_window_causal_mask)BaseModelOutputWithPast)ROPE_INIT_FUNCTIONSrope_config_validation)ALL_ATTENTION_FUNCTIONS)Unpack   )Olmo2Config)	Olmo2AttentionOlmo2DecoderLayerOlmo2ForCausalLM
Olmo2ModelOlmo2PreTrainedModelOlmo2RMSNormOlmo2RotaryEmbeddingapply_rotary_pos_embeager_attention_forwardc                        e Zd ZdZdZddddddddZdgd	gfd
dgd
gfd
gd
gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zd Z xZ	S )Olmo3Configa  
    This is the configuration class to store the configuration of a [`Olmo3Model`]. It is used to instantiate an OLMo3
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the [allenai/OLMo-3-0725-1B](https://huggingface.co/allenai/OLMo-3-0725-1B).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50304):
            Vocabulary size of the Olmo3 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Olmo3Model`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 50279):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        sliding_window (`int`, *optional*, defaults to 4096):
            Size of the sliding window for sliding window attention.
        layer_types (`list`, *optional*):
            Attention pattern for each layer. Defaults to sliding window attention
            for 3 out of 4 layers, and full attention for every 4th layer.

    ```python
    >>> from transformers import Olmo3Model, Olmo3Config

    >>> # Initializing a Olmo3 7B style configuration
    >>> configuration = Olmo3Config()

    >>> # Initializing a model from the Olmo3 7B style configuration
    >>> model = Olmo3Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    olmo3colwise_reprowwise_repcolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                 h   t        |   di d|d|d|d|d|d|d|d|d	|	d
|
d|d|d|d|d|d|d|d|d|| || _        || _        | j                  5t	        | j
                        D cg c]  }|dz   dz  dk7  rdnd c}| _        t        | j                         y c c}w )N
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actmax_position_embeddingsinitializer_range	use_cachepad_token_idbos_token_ideos_token_idtie_word_embeddings
rope_thetarope_scalingattention_biasattention_dropoutrms_norm_eps      r   sliding_attentionfull_attention )super__init__sliding_windowlayer_typesranger.   r	   )selfr+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   rE   rF   kwargsi	__class__s                           f/var/www/html/aiagenthome/venv/lib/python3.12/site-packages/transformers/models/olmo3/modular_olmo3.pyrD   zOlmo3Config.__init__   sB   2 	 	
!	
#	
 0	
 0		

 !4	
 !4	
 "	
 %<	
 0	
  	
 &	
 &	
 &	
 !4	
 "	
  &!	
" *#	
$ 0%	
& &)	
. -&#W\]a]s]sWt WtRSA{a'7#=MMWt D 	d../ s   ;B/c                     t        |        y)z<
        Validate the `rope_scaling` configuration.
        N)r   )rH   s    rL   _rope_scaling_validationz$Olmo3Config._rope_scaling_validation   s     	t$    )i     i +      rQ   Nsilui   g{Gz?Tr>   Nig  Fg     @NF        gh㈵>rP   N)
__name__
__module____qualname____doc__
model_typebase_model_tp_planbase_model_pp_planrD   rN   __classcell__rK   s   @rL   r   r   ,   s    m^ J%2%2%2%2"+ )"+ &(9:#%568IJ!"_$56   $!-60p%rO   r   c                       e Zd Zy)Olmo3RMSNormNrT   rU   rV   rB   rO   rL   r^   r^          rO   r^   c                       e Zd Zdedef fdZ	 	 ddej                  deej                  ej                  f   de	ej                     de	e
   de	ej                     d	ee   d
eej                  e	ej                     f   fdZ xZS )Olmo3Attentionconfig	layer_idxc                     t         |   ||       |j                  J |j                  |   | _        | j                  dk(  r|j                  | _        y d | _        y )N)rd   r@   )rC   rD   rF   attention_typerE   rH   rc   rd   rK   s      rL   rD   zOlmo3Attention.__init__   s^    95!!---$00;7;7J7JNa7af33gkrO   r%   position_embeddingsr&   past_key_valuescache_positionrI   returnc                    |j                   d d }g |d| j                  }| j                  | j                  |            }	| j	                  | j                  |            }
| j                  |      }|	j                  |      j                  dd      }	|
j                  |      j                  dd      }
|j                  |      j                  dd      }|\  }}t        |	|
||      \  }	}
|'|||d}|j                  |
|| j                  |      \  }
}t        }| j                  j                  dk7  rt        | j                  j                     } || |	|
||f| j                   sdn| j"                  | j$                  | j&                  d|\  }} |j(                  g |d j+                         }| j-                  |      }||fS )Nr>   r   )sincosrj   eagerrS   )dropoutscalingrE   )shapehead_dimq_normq_projk_normk_projv_projview	transposer   updaterd   r   rc   _attn_implementationr   trainingr<   rr   rE   reshape
contiguouso_proj)rH   r%   rh   r&   ri   rj   rI   input_shapehidden_shapequery_states
key_statesvalue_statesro   rn   cache_kwargsattention_interfaceattn_outputattn_weightss                     rL   forwardzOlmo3Attention.forward   s    $))#2.88b8$--8{{4;;}#=>[[]!;<
{{=1#((6@@AF__\2<<QB
#((6@@AF&S#7jRUWZ#[ j&#&snUL'6'='=j,X\XfXfht'u$J(?;;++w6"9$++:Z:Z"[$7
%
  $}}C$2H2HLL..
%
 
%
!\ *k));;;;FFHkk+.L((rO   NN)rT   rU   rV   r   intrD   torchTensortupler   r   
LongTensorr   r   r   r[   r\   s   @rL   rb   rb      s    l{ ls l ,059.)||.) #5<<#=>.) !.	.)
 "%.) !!1!12.) +,.) 
u||Xell33	4.)rO   rb   c                       e Zd Zy)Olmo3DecoderLayerNr_   rB   rO   rL   r   r   )  r`   rO   r   c                   $    e Zd Zddedee   fdZy)Olmo3RotaryEmbeddingNrc   	rope_typec                 V   t         j                  j                  |        ||| _        nht	        |d      rUt        |j                  t              r;|j                  j                  d|j                  j                  d            | _        nd| _        | j                  J |j                  | _
        |j                  | _        || _        t        | j                     | _        | j                  | j                  |      \  }| _        | j!                  d|d       | j"                  | _        y )Nr:   r   typedefaultinv_freqF)
persistent)nnModulerD   r   hasattr
isinstancer:   dictgetr2   max_seq_len_cachedoriginal_max_seq_lenrc   r   rope_init_fnattention_scalingregister_bufferr   original_inv_freq)rH   rc   devicer   r   s        rL   rD   zOlmo3RotaryEmbedding.__init__0  s    
		4  &DNV^,F<O<OQU1V#0044[&BUBUBYBYZ`BabDN&DN~~)))"("@"@$*$B$B!/?+/+<+<T[[&+Q($(ZeD!%rO   r   )rT   rU   rV   r   r   strrD   rB   rO   rL   r   r   /  s    /{ /HSM /rO   r   c                       e Zd Zy)Olmo3PreTrainedModelNr_   rB   rO   rL   r   r   F  r`   rO   r   c                        e Zd Zdef fdZ	 	 	 	 	 	 	 ddeej                     deej                     deej                     dee	   deej                     deej                     d	ee   d
ee   defdZ xZS )
Olmo3Modelrc   c           	      l   t         |   |       t        |j                  |j                        | _        t        j                  t        |j                        D cg c]  }t        ||       c}      | _        t        j                  t        |d      t        |      d      | _        | `y c c}w )N)epsr   )rc   r   rc   r@   rA   )rC   rD   r^   r,   r=   r)   r   
ModuleListrG   r.   r   r(   
ModuleDictr   rotary_embs
rotary_embrg   s      rL   rD   zOlmo3Model.__init__N  s      !3!39L9LM	mmCHIaIaCbcCbivy1Cbc
 ==%9S\%]"6f"E
 O ds   B1r#   r&   position_idsri   r$   rj   r4   rI   rk   c           
         |d u |d uz  rt        d      || j                  |      }|r|t        | j                        }|F||j	                         nd}	t        j                  |	|	|j                  d   z   |j                        }||j                  d      }t        |x}
t              s*| j                  |||||d}t        di |t        di |d}
|} | j                  d   ||       | j                  d	   ||      d
}| j                  d | j                  j                    D ]?  } ||f|
|j"                  j$                     |||||j"                  j$                     d|}A | j'                  |      }t)        ||      S )Nz:You must specify exactly one of input_ids or inputs_embedsr   r   r>   )r   )rc   input_embedsr&   rj   ri   r   )rA   r@   r@   rA   r   )r&   r   ri   rj   rh   )last_hidden_stateri   rB   )
ValueErrorr'   r   rc   get_seq_lengthr   arangers   r   	unsqueezer   r   r
   r   r   r(   r.   	self_attnrf   r)   r   )rH   r#   r&   r   ri   r$   rj   r4   rI   past_seen_tokenscausal_mask_mappingmask_kwargsr%   position_embeddings_mappingdecoder_layers                  rL   r   zOlmo3Model.forward\  s    -t";<YZZ *.*;*;I*FM0*$++>O!CRC^==?de+0<< "2]5H5H5K"KTaThTh,N )33A6L ?-F ++ -"0"0#2 ,K #5"C{"C%F%U%U#
 &!F!1!12E!F}Vb!c@d../?@P\]'
#
 "[[)H4;;+H+HIM)2=3J3J3Y3YZ) /-$?@W@W@f@f$g M J 		-0&++
 	
rO   )NNNNNNN)rT   rU   rV   r   rD   r   r   r   r   r   FloatTensorboolr   r   r   r   r[   r\   s   @rL   r   r   M  s    {   151537+/5959$(C
E,,-C
 !.C
 u//0	C

 "%C
   1 12C
 !!1!12C
 D>C
 +,C
 
!C
rO   r   c                       e Zd Zy)Olmo3ForCausalLMNr_   rB   rO   rL   r   r     r`   rO   r   )r   r   r   r   ).typingr   r   r   torch.nnr   transformers.utils.genericr   cache_utilsr   r   configuration_utilsr	   masking_utilsr
   r   modeling_outputsr   modeling_rope_utilsr   r   modeling_utilsr   processing_utilsr   olmo2.configuration_olmo2r   olmo2.modeling_olmo2r   r   r   r   r   r   r   r   r   r   r^   rb   r   r   r   r   r   __all__rB   rO   rL   <module>r      s     &   9 . 8 R 7 N 5 & 3
 
 
|%+ |%~	< 	5)^ 5)p	) 	// /.	/ 	R
 R
j	' 	rO   