
    h<                        d Z ddlmZmZmZ ddlZddlmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZmZmZmZ ddlmZ dd	lmZ dd
lmZ ddlmZ  ej4                  e      Z G d dej:                        Z G d dej:                        Z G d dej:                        Z  G d dej:                        Z!e G d de
             Z"e G d de"             Z# ed       G d de"             Z$ ed       G d de"e             Z%g d Z&y)!zPyTorch TextNet model.    )AnyOptionalUnionN)Tensor)PreTrainedModel)ACT2CLS)BackboneOutputBaseModelOutputWithNoAttention(BaseModelOutputWithPoolingAndNoAttention$ImageClassifierOutputWithNoAttention)TextNetConfig)logging)BackboneMixin   )auto_docstringc                   \     e Zd Zdef fdZdej                  dej                  fdZ xZS )TextNetConvLayerconfigc                    t         |           |j                  | _        |j                  | _        |j                  | _        t        |j                  t              r$|j                  d   dz  |j                  d   dz  fn|j                  dz  }t        j                  |j                  |j                  |j                  |j                  |d      | _        t        j                  |j                  |j                         | _        t        j$                         | _        | j                  t)        | j                            | _        y y )Nr         F)kernel_sizestridepaddingbias)super__init__stem_kernel_sizer   stem_strider   stem_act_funcactivation_function
isinstancetuplennConv2dstem_num_channelsstem_out_channelsconvBatchNorm2dbatch_norm_eps
batch_normIdentity
activationr   )selfr   r   	__class__s      k/var/www/html/aiagenthome/venv/lib/python3.12/site-packages/transformers/models/textnet/modeling_textnet.pyr   zTextNetConvLayer.__init__*   s   !22((#)#7#7  &1159 "a'););A)>!)CD((A- 	 II$$$$//%%
	 ..)A)A6CXCXY++-##/%d&>&>?ADO 0    hidden_statesreturnc                 h    | j                  |      }| j                  |      }| j                  |      S N)r(   r+   r-   )r.   r2   s     r0   forwardzTextNetConvLayer.forwardE   s-    		-06}--r1   )	__name__
__module____qualname__r   r   torchr   r6   __classcell__r/   s   @r0   r   r   )   s,    B} B6.U\\ .ell .r1   r   c            
       p     e Zd ZdZdededededef
 fdZdej                  d	ej                  fd
Z	 xZ
S )TextNetRepConvLayera  
    This layer supports re-parameterization by combining multiple convolutional branches
    (e.g., main convolution, vertical, horizontal, and identity branches) during training.
    At inference time, these branches can be collapsed into a single convolution for
    efficiency, as per the re-parameterization paradigm.

    The "Rep" in the name stands for "re-parameterization" (introduced by RepVGG).
    r   in_channelsout_channelsr   r   c                 t   t         	|           || _        || _        || _        || _        |d   dz
  dz  |d   dz
  dz  f}t        j                         | _        t        j                  |||||d      | _
        t        j                  ||j                        | _        |d   dz
  dz  df}d|d   dz
  dz  f}|d   dk7  rLt        j                  |||d   df||d      | _        t        j                  ||j                        | _        nd\  | _        | _        |d   dk7  rLt        j                  ||d|d   f||d      | _        t        j                  ||j                        | _        nd\  | _        | _        ||k(  r,|dk(  r't        j                  ||j                        | _        y d | _        y )Nr   r   r   F)r?   r@   r   r   r   r   )num_featuresepsNN)r   r   num_channelsr@   r   r   r$   ReLUr!   r%   	main_convr)   r*   main_batch_normvertical_convvertical_batch_normhorizontal_convhorizontal_batch_normrbr_identity)
r.   r   r?   r@   r   r   r   vertical_paddinghorizontal_paddingr/   s
            r0   r   zTextNetRepConvLayer.__init__U   s   '(&NQ&1,{1~/Aa.GH#%779 #%#
  "~~<VMbMbc(^a/A5q9+a.1"4!:;q>Q!#')(^Q/("D (*~~<U[UjUj'kD$;E8D 8q>Q#%99')A/*$D  *,\W]WlWl)mD&?I<D $"< {*v{ NN9N9NO 	  	r1   r2   r3   c                 x   | j                  |      }| j                  |      }| j                  '| j                  |      }| j                  |      }||z   }| j                  '| j	                  |      }| j                  |      }||z   }| j                  | j                  |      }||z   }| j                  |      S r5   )rG   rH   rI   rJ   rK   rL   rM   r!   )r.   r2   main_outputsvertical_outputshorizontal_outputsid_outs         r0   r6   zTextNetRepConvLayer.forward   s    ~~m4++L9 )#11-@#778HI'*::L +!%!5!5m!D!%!;!;<N!O'*<<L(&&}5F'&0L''55r1   )r7   r8   r9   __doc__r   intr   r:   r   r6   r;   r<   s   @r0   r>   r>   K   sN    7
} 7
3 7
c 7
`c 7
mp 7
r6U\\ 6ell 6r1   r>   c                   .     e Zd Zdedef fdZd Z xZS )TextNetStager   depthc                 p   t         |           |j                  |   }|j                  |   }t	        |      }|j
                  |   }|j
                  |dz      }|g|g|dz
  z  z   }|g|z  }	g }
t        ||	||      D ]  }|
j                  t        |g|         t        j                  |
      | _        y )Nr   )r   r   conv_layer_kernel_sizesconv_layer_strideslenhidden_sizeszipappendr>   r$   
ModuleListstage)r.   r   rY   r   r   
num_layersstage_in_channel_sizestage_out_channel_sizer?   r@   rb   stage_configr/   s               r0   r   zTextNetStage.__init__   s    44U;**51%
 & 3 3E :!'!4!4UQY!?,-1G0HJYZN0[[./*<\;OLLL,VClCD P]]5)
r1   c                 8    | j                   D ]
  } ||      } |S r5   )rb   )r.   hidden_stateblocks      r0   r6   zTextNetStage.forward   s     ZZE .L  r1   )r7   r8   r9   r   rV   r   r6   r;   r<   s   @r0   rX   rX      s    *} *S *"r1   rX   c            	       b     e Zd Zdef fdZ	 	 ddej                  dee   dee   de	fdZ
 xZS )	TextNetEncoderr   c                     t         |           g }t        |j                        }t	        |      D ]  }|j                  t        ||              t        j                  |      | _	        y r5   )
r   r   r]   r[   ranger`   rX   r$   ra   stages)r.   r   rn   
num_stagesstage_ixr/   s        r0   r   zTextNetEncoder.__init__   sW    778
j)HMM,vx89 * mmF+r1   rh   output_hidden_statesreturn_dictr3   c                     |g}| j                   D ]  } ||      }|j                  |        |s|f}|r||fz   S |S t        ||      S )N)last_hidden_stater2   )rn   r`   r
   )r.   rh   rq   rr   r2   rb   outputs          r0   r6   zTextNetEncoder.forward   s`     &[[E .L  . ! "_F0D6],,P&P-\ijjr1   rD   )r7   r8   r9   r   r   r:   r   r   boolr
   r6   r;   r<   s   @r0   rk   rk      sS    ,} , 04&*	kllk 'tnk d^	k
 
(kr1   rk   c                   &    e Zd ZU eed<   dZdZd Zy)TextNetPreTrainedModelr   textnetpixel_valuesc                    t        |t        j                  t        j                  f      rm|j                  j
                  j                  d| j                  j                         |j                  %|j                  j
                  j                          y y t        |t        j                        rW|j                  j
                  j                  d       |j                  %|j                  j
                  j                          y y y )Ng        )meanstdg      ?)r"   r$   Linearr%   weightdatanormal_r   initializer_ranger   zero_r)   fill_)r.   modules     r0   _init_weightsz$TextNetPreTrainedModel._init_weights   s    fryy"))45MM&&CT[[5R5R&S{{&  &&( '/MM$$S){{&  &&( ' 0r1   N)r7   r8   r9   r   __annotations__base_model_prefixmain_input_namer    r1   r0   rx   rx      s    !$O)r1   rx   c                   r     e Zd Z fdZe	 ddedee   dee   dee	e
ee
   f   e	e
   ef   fd       Z xZS )TextNetModelc                     t         |   |       t        |      | _        t	        |      | _        t        j                  d      | _        | j                          y )N)r   r   )
r   r   r   stemrk   encoderr$   AdaptiveAvgPool2dpooler	post_initr.   r   r/   s     r0   r   zTextNetModel.__init__   sD     $V,	%f-**62r1   rz   rq   rr   r3   c                 :   ||n| j                   j                  }||n| j                   j                  }| j                  |      }| j	                  |||      }|d   }| j                  |      }|s||f}|r	||d   fz   S |S t        |||r
|d         S d       S )Nrq   rr   r   r   )rt   pooler_outputr2   )r   use_return_dictrq   r   r   r   r   )	r.   rz   rq   rr   rh   encoder_outputsrt   pooled_outputru   s	            r0   r6   zTextNetModel.forward   s     &1%<k$++B]B]$8$D $++JjJj 	 yy.,,/CQ\ ' 
 ,A.$56'7F5I6_Q/11UvU7/'0D/!,
 	
 KO
 	
r1   rD   )r7   r8   r9   r   r   r   r   rv   r   r#   r   listr   r6   r;   r<   s   @r0   r   r      sg     os
"
:B4.
^fgk^l
	uS$s)^$eCj2ZZ	[
 
r1   r   z
    TextNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
    ImageNet.
    )custom_introc                        e Zd Z fdZe	 	 	 	 ddeej                     deej                     dee	   dee	   de
f
d       Z xZS )	TextNetForImageClassificationc                    t         |   |       |j                  | _        t        |      | _        t        j                  d      | _        t        j                         | _	        |j                  dkD  r-t        j                  |j                  d   |j                        nt        j                         | _        t        j                  | j                  | j                  g      | _        | j!                          y )N)r   r   r   )r   r   
num_labelsr   ry   r$   r   avg_poolFlattenflattenr~   r^   r,   fcra   
classifierr   r   s     r0   r   z&TextNetForImageClassification.__init__  s      ++#F+,,V4zz|KQK\K\_`K`"))F//3V5F5FGfhfqfqfs --(EF 	r1   rz   labelsrq   rr   r3   c                 X   ||n| j                   j                  }| j                  |||      }|d   }| j                  D ]
  } ||      } | j	                  |      }d}	|| j                  ||| j                         }	|s|f|dd z   }
|	|	f|
z   S |
S t        |	||j                        S )al  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Examples:
        ```python
        >>> import torch
        >>> import requests
        >>> from transformers import TextNetForImageClassification, TextNetImageProcessor
        >>> from PIL import Image

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> processor = TextNetImageProcessor.from_pretrained("czczup/textnet-base")
        >>> model = TextNetForImageClassification.from_pretrained("czczup/textnet-base")

        >>> inputs = processor(images=image, return_tensors="pt")
        >>> with torch.no_grad():
        ...     outputs = model(**inputs)
        >>> outputs.logits.shape
        torch.Size([1, 2])
        ```Nr   r   r   )losslogitsr2   )r   r   ry   r   r   loss_functionr   r2   )r.   rz   r   rq   rr   outputsrt   layerr   r   ru   s              r0   r6   z%TextNetForImageClassification.forward&  s    B &1%<k$++B]B],,|BVdo,p#AJ__E %&7 8 %*+%%ffdkkBDY,F'+'7D7V#CVC3f\c\q\qrrr1   )NNNN)r7   r8   r9   r   r   r   r:   FloatTensor
LongTensorrv   r   r6   r;   r<   s   @r0   r   r     s      59-1/3&*0su0010s ))*0s 'tn	0s
 d^0s 
.0s 0sr1   r   zP
    TextNet backbone, to be used with frameworks like DETR and MaskFormer.
    c                   d     e Zd ZdZ fdZe	 ddedee   dee   de	e
e
   ef   fd       Z xZS )	TextNetBackboneFc                     t         |   |       t         | 	  |       t        |      | _        |j
                  | _        | j                          y r5   )r   r   _init_backboner   ry   r^   rB   r   r   s     r0   r   zTextNetBackbone.__init__b  sC     v&#F+"// 	r1   rz   rq   rr   r3   c                    ||n| j                   j                  }||n| j                   j                  }| j                  |d|      }|r|j                  n|d   }d}t        | j                        D ]  \  }}|| j                  v s|||   fz  } |s |f}	|r|r|j                  n|d   }|	|fz  }	|	S t        ||r|j                  d      S dd      S )a  
        Examples:

        ```python
        >>> import torch
        >>> import requests
        >>> from PIL import Image
        >>> from transformers import AutoImageProcessor, AutoBackbone

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> processor = AutoImageProcessor.from_pretrained("czczup/textnet-base")
        >>> model = AutoBackbone.from_pretrained("czczup/textnet-base")

        >>> inputs = processor(image, return_tensors="pt")
        >>> with torch.no_grad():
        >>>     outputs = model(**inputs)
        ```NTr   r   r   )feature_mapsr2   
attentions)	r   r   rq   ry   r2   	enumeratestage_namesout_featuresr	   )
r.   rz   rq   rr   r   r2   r   idxrb   ru   s
             r0   r6   zTextNetBackbone.forwardl  s    . &1%<k$++B]B]$8$D $++JjJj 	 ,,|$T_,`1<--'!*#D$4$45JC)))s!3 55 6 "_F#9D 5 5'RS*=**M%3G'//
 	
MQ
 	
r1   rD   )r7   r8   r9   has_attentionsr   r   r   r   rv   r   r#   r	   r6   r;   r<   s   @r0   r   r   Z  s^     N os/
"/
:B4./
^fgk^l/
	uU|^+	,/
 /
r1   r   )r   r   rx   r   )'rU   typingr   r   r   r:   torch.nnr$   r   transformersr   transformers.activationsr   transformers.modeling_outputsr	   r
   r   r   1transformers.models.textnet.configuration_textnetr   transformers.utilsr   !transformers.utils.backbone_utilsr   utilsr   
get_loggerr7   loggerModuler   r>   rX   rk   rx   r   r   r   __all__r   r1   r0   <module>r      s(    ' '    ( ,  L & ; # 
		H	%.ryy .DW6")) W6t299 0kRYY k: )_ ) )  "
) "
 "
J @s$: @s@sF 
=
,m =

=
@ ir1   