o
    
sh                     @   sh  d dl Z d dlZd dlmZ d dlmZ d dlmZ d dlm	Z	m
Z
 d dlZd dlZd dlmZ ddlmZmZmZmZmZmZmZmZmZmZmZmZ dd	lmZmZm Z m!Z!m"Z"m#Z# e rd dl$Z%d dl&Z%e'e'e%j(j)e'd
kr{e%j*j+Z,ne%j*Z,e rd dl-m.Z. e,j/e re.j0ne.j/e,j1e.j1e,j2e.j2e,j3e.j3e,j4e.j4e,j5e.j5iZ6ni Z6e rd dl7Z7e8e9Z:e
dej;de<d e<ej; e<d f Z=G dd deZ>G dd deZ?G dd deZ@eAeBe
eCeBe<eA f f ZDdd ZEG dd deZFdd ZGdd ZHde<fddZIdd  ZJd!d" ZKd#d$ ZLd%ej;d&eMfd'd(ZNdpd*eCd&e<e= fd+d,ZO	)dpde
e<e= e=f d*eCd&e=fd-d.ZP	)dpde
e<e= e=f d*eCd&e=fd/d0ZQd&ej;fd1d2ZR	dqd%ej;d3e	e
eCeSeCd4f f  d&e>fd5d6ZT	dqd%ej;d7e	e
e>eBf  d&eCfd8d9ZUdqd%ej;d:e>d&eSeCeCf fd;d<ZVd=eSeCeCf d>eCd?eCd&eSeCeCf fd@dAZWdBeAeBe
e<eSf f d&eMfdCdDZXdBeAeBe
e<eSf f d&eMfdEdFZYdGeeAeBe
e<eSf f  d&eMfdHdIZZdGeeAeBe
e<eSf f  d&eMfdJdKZ[dqd%e
eBdf dLe	e\ d&dfdMdNZ]	dqde
e<eSeBdf dLe	e\ d&e
de<d e<e<d  f fdOdPZ^													drdQe	eM dRe	e\ dSe	eM dTe	e
e\e<e\ f  dUe	e
e\e<e\ f  dVe	eM dWe	eC dXe	eM dYe	eAeBeCf  dZe	eM d[e	eAeBeCf  d\e	d] d^e	d_ fd`daZ_G dbdc dcZ`dde?deeSe?d4f dGe<eA d&dfdfdgZadhe<eB die<eB fdjdkZbedldmG dndo doZcdS )s    N)Iterable)	dataclass)BytesIO)OptionalUnion)version   )ExplicitEnumis_jax_tensoris_numpy_arrayis_tf_tensoris_torch_availableis_torch_tensoris_torchvision_availableis_torchvision_v2_availableis_vision_availableloggingrequires_backendsto_numpy)IMAGENET_DEFAULT_MEANIMAGENET_DEFAULT_STDIMAGENET_STANDARD_MEANIMAGENET_STANDARD_STDOPENAI_CLIP_MEANOPENAI_CLIP_STDz9.1.0)InterpolationModezPIL.Image.Imageztorch.Tensorc                   @      e Zd ZdZdZdS )ChannelDimensionchannels_firstchannels_lastN)__name__
__module____qualname__FIRSTLAST r%   r%   V/var/www/html/alpaca_bot/venv/lib/python3.10/site-packages/transformers/image_utils.pyr   X       r   c                   @   r   )AnnotationFormatcoco_detectioncoco_panopticN)r    r!   r"   COCO_DETECTIONCOCO_PANOPTICr%   r%   r%   r&   r(   ]   r'   r(   c                   @   s   e Zd ZejjZejjZdS )AnnotionFormatN)r    r!   r"   r(   r+   valuer,   r%   r%   r%   r&   r-   b   s    r-   c                 C   s   t  o	t| tjjS N)r   
isinstancePILImageimgr%   r%   r&   is_pil_imagej   s   r5   c                   @   s    e Zd ZdZdZdZdZdZdS )	ImageTypepillowtorchnumpy
tensorflowjaxN)r    r!   r"   r1   TORCHNUMPY
TENSORFLOWJAXr%   r%   r%   r&   r6   n   s    r6   c                 C   sX   t | rtjS t| rtjS t| rtjS t| rtjS t	| r#tj
S tdt|  )NzUnrecognized image type )r5   r6   r1   r   r<   r   r=   r   r>   r
   r?   
ValueErrortypeimager%   r%   r&   get_image_typev   s   rD   c                 C   s(   t | pt| pt| pt| pt| S r/   )r5   r   r   r   r
   r3   r%   r%   r&   is_valid_image   s   (rE   imagesc                 C   s   | o
t dd | D S )Nc                 s       | ]}t |V  qd S r/   )rE   .0rC   r%   r%   r&   	<genexpr>       z*is_valid_list_of_images.<locals>.<genexpr>all)rF   r%   r%   r&   is_valid_list_of_images   s   rN   c                 C   s\   t | d trdd | D S t | d tjrtj| ddS t | d tjr,tj| ddS d S )Nr   c                 S      g | ]	}|D ]}|qqS r%   r%   )rI   sublistitemr%   r%   r&   
<listcomp>       z$concatenate_list.<locals>.<listcomp>axis)dim)r0   listnpndarrayconcatenater8   Tensorcat)
input_listr%   r%   r&   concatenate_list   s   r^   c                 C   s:   t | ttfr| D ]	}t|s dS q	dS t| sdS dS )NFT)r0   rW   tuplevalid_imagesrE   )imgsr4   r%   r%   r&   r`      s   r`   c                 C   s   t | ttfrt| d S dS )Nr   F)r0   rW   r_   rE   r3   r%   r%   r&   
is_batched   s   rb   rC   returnc                 C   s,   | j tjkrdS t| dkot| dkS )zV
    Checks to see whether the pixel values have already been rescaled to [0, 1].
    Fr   r   )dtyperX   uint8minmaxrB   r%   r%   r&   is_scaled_image   s   rh      expected_ndimsc                 C   s   t | r| S t| r| gS t| r9| j|d krt| } | S | j|kr(| g} | S td|d  d| d| j dtdt|  d)a  
    Ensure that the output is a list of images. If the input is a single image, it is converted to a list of length 1.
    If the input is a batch of images, it is converted to a list of images.

    Args:
        images (`ImageInput`):
            Image of images to turn into a list of images.
        expected_ndims (`int`, *optional*, defaults to 3):
            Expected number of dimensions for a single input image. If the input image has a different number of
            dimensions, an error is raised.
    r   z%Invalid image shape. Expected either z or z dimensions, but got z dimensions.ztInvalid image type. Expected either PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or jax.ndarray, but got .)rb   r5   rE   ndimrW   r@   rA   rF   rj   r%   r%   r&   make_list_of_images   s*   	
rn   c                 C   s   t | ttfr tdd | D r tdd | D r dd | D S t | ttfrJt| rJt| d s8| d j|kr:| S | d j|d krJdd | D S t| ret| sW| j|krZ| gS | j|d kret| S td	|  )
a  
    Ensure that the output is a flat list of images. If the input is a single image, it is converted to a list of length 1.
    If the input is a nested list of images, it is converted to a flat list of images.
    Args:
        images (`Union[list[ImageInput], ImageInput]`):
            The input image.
        expected_ndims (`int`, *optional*, defaults to 3):
            The expected number of dimensions for a single input image.
    Returns:
        list: A list of images or a 4d array of images.
    c                 s       | ]
}t |ttfV  qd S r/   r0   rW   r_   rI   images_ir%   r%   r&   rJ          z+make_flat_list_of_images.<locals>.<genexpr>c                 s   rG   r/   rN   rq   r%   r%   r&   rJ      rK   c                 S   rO   r%   r%   rI   img_listr4   r%   r%   r&   rR      rS   z,make_flat_list_of_images.<locals>.<listcomp>r   r   c                 S   rO   r%   r%   ru   r%   r%   r&   rR      rS   z*Could not make a flat list of images from 	r0   rW   r_   rM   rN   r5   rl   rE   r@   rm   r%   r%   r&   make_flat_list_of_images   s$   rx   c                 C   s   t | ttfrtdd | D rtdd | D r| S t | ttfrFt| rFt| d s3| d j|kr6| gS | d j|d krFdd | D S t| rct| sS| j|krW| ggS | j|d krct| gS td)	as  
    Ensure that the output is a nested list of images.
    Args:
        images (`Union[list[ImageInput], ImageInput]`):
            The input image.
        expected_ndims (`int`, *optional*, defaults to 3):
            The expected number of dimensions for a single input image.
    Returns:
        list: A list of list of images or a list of 4d array of images.
    c                 s   ro   r/   rp   rq   r%   r%   r&   rJ     rs   z-make_nested_list_of_images.<locals>.<genexpr>c                 s   rG   r/   rt   rq   r%   r%   r&   rJ     rK   r   r   c                 S   s   g | ]}t |qS r%   )rW   rH   r%   r%   r&   rR     s    z.make_nested_list_of_images.<locals>.<listcomp>z]Invalid input type. Must be a single image, a list of images, or a list of batches of images.rw   rm   r%   r%   r&   make_nested_list_of_images   s$   
ry   c                 C   s@   t | stdt|  t rt| tjjrt| S t	| S )NzInvalid image type: )
rE   r@   rA   r   r0   r1   r2   rX   arrayr   r3   r%   r%   r&   to_numpy_array&  s
   
r{   num_channels.c                 C   s   |dur|nd}t |tr|fn|}| jdkrd\}}n| jdkr&d\}}n| jdkr0d\}}ntd| j | j| |v rS| j| |v rStd	| j d
 tjS | j| |v r]tjS | j| |v rgtj	S td)a[  
    Infers the channel dimension format of `image`.

    Args:
        image (`np.ndarray`):
            The image to infer the channel dimension of.
        num_channels (`int` or `tuple[int, ...]`, *optional*, defaults to `(1, 3)`):
            The number of channels of the image.

    Returns:
        The channel dimension of the image.
    Nr   ri   ri   )r            )r~   r   z(Unsupported number of image dimensions: z4The channel dimension is ambiguous. Got image shape z. Assuming channels are the first dimension. Use the [input_data_format](https://huggingface.co/docs/transformers/main/internal/image_processing_utils#transformers.image_transforms.rescale.input_data_format) parameter to assign the channel dimension.z(Unable to infer channel dimension format)
r0   intrl   r@   shapeloggerwarningr   r#   r$   )rC   r|   	first_dimlast_dimr%   r%   r&   infer_channel_dimension_format/  s&   





r   input_data_formatc                 C   sF   |du rt | }|tjkr| jd S |tjkr| jd S td| )a  
    Returns the channel dimension axis of the image.

    Args:
        image (`np.ndarray`):
            The image to get the channel dimension axis of.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format of the image. If `None`, will infer the channel dimension from the image.

    Returns:
        The channel dimension axis of the image.
    Nri   r   Unsupported data format: )r   r   r#   rl   r$   r@   )rC   r   r%   r%   r&   get_channel_dimension_axisV  s   



r   channel_dimc                 C   sZ   |du rt | }|tjkr| jd | jd fS |tjkr&| jd | jd fS td| )a  
    Returns the (height, width) dimensions of the image.

    Args:
        image (`np.ndarray`):
            The image to get the dimensions of.
        channel_dim (`ChannelDimension`, *optional*):
            Which dimension the channel dimension is in. If `None`, will infer the channel dimension from the image.

    Returns:
        A tuple of the image's height and width.
    Nr   )r   r   r#   r   r$   r@   )rC   r   r%   r%   r&   get_image_sizen  s   

r   
image_size
max_height	max_widthc           
      C   sB   | \}}|| }|| }t ||}t|| }t|| }	||	fS )a  
    Computes the output image size given the input image and the maximum allowed height and width. Keep aspect ratio.
    Important, even if image_height < max_height and image_width < max_width, the image will be resized
    to at least one of the edges be equal to max_height or max_width.

    For example:
        - input_size: (100, 200), max_height: 50, max_width: 50 -> output_size: (25, 50)
        - input_size: (100, 200), max_height: 200, max_width: 500 -> output_size: (200, 400)

    Args:
        image_size (`tuple[int, int]`):
            The image to resize.
        max_height (`int`):
            The maximum allowed height.
        max_width (`int`):
            The maximum allowed width.
    )rf   r   )
r   r   r   heightwidthheight_scalewidth_scale	min_scale
new_height	new_widthr%   r%   r&   #get_image_size_for_max_height_width  s   
r   
annotationc                 C   sV   t | tr)d| v r)d| v r)t | d ttfr)t| d dks't | d d tr)dS dS )Nimage_idannotationsr   TFr0   dictrW   r_   lenr   r%   r%   r&   "is_valid_annotation_coco_detection  s   "r   c                 C   s^   t | tr-d| v r-d| v r-d| v r-t | d ttfr-t| d dks+t | d d tr-dS dS )Nr   segments_info	file_namer   TFr   r   r%   r%   r&   !is_valid_annotation_coco_panoptic  s   "r   r   c                 C      t dd | D S )Nc                 s   rG   r/   )r   rI   annr%   r%   r&   rJ     rK   z3valid_coco_detection_annotations.<locals>.<genexpr>rL   r   r%   r%   r&    valid_coco_detection_annotations     r   c                 C   r   )Nc                 s   rG   r/   )r   r   r%   r%   r&   rJ     rK   z2valid_coco_panoptic_annotations.<locals>.<genexpr>rL   r   r%   r%   r&   valid_coco_panoptic_annotations  r   r   timeoutc              
   C   s   t tdg t| tre| ds| dr$tjtt	j
| |dj} nOtj| r1tj| } nB| dr=| dd } zt|  }tjt|} W n$ tyd } z
td|  d	| d
}~ww t| tjjro| } ntdtj| } | d} | S )a3  
    Loads `image` to a PIL Image.

    Args:
        image (`str` or `PIL.Image.Image`):
            The image to convert to the PIL Image format.
        timeout (`float`, *optional*):
            The timeout value in seconds for the URL request.

    Returns:
        `PIL.Image.Image`: A PIL Image.
    visionzhttp://zhttps://r   zdata:image/,r   zIncorrect image source. Must be a valid URL starting with `http://` or `https://`, a valid path to an image file, or a base64 encoded string. Got z. Failed with NzuIncorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image.RGB)r   
load_imager0   str
startswithr1   r2   openr   requestsgetcontentospathisfilesplitbase64decodebytesencode	Exceptionr@   	TypeErrorImageOpsexif_transposeconvert)rC   r   b64er%   r%   r&   r     s2   


r   c                    sX   t | ttfr&t| rt | d ttfr fdd| D S  fdd| D S t|  dS )a  Loads images, handling different levels of nesting.

    Args:
      images: A single image, a list of images, or a list of lists of images to load.
      timeout: Timeout for loading images.

    Returns:
      A single image, a list of images, a list of lists of images.
    r   c                    s   g | ]} fd d|D qS )c                       g | ]}t | d qS r   r   rH   r   r%   r&   rR         z*load_images.<locals>.<listcomp>.<listcomp>r%   )rI   image_groupr   r%   r&   rR     s    zload_images.<locals>.<listcomp>c                    r   r   r   rH   r   r%   r&   rR     r   r   )r0   rW   r_   r   r   )rF   r   r%   r   r&   load_images  s
   r   
do_rescalerescale_factordo_normalize
image_mean	image_stddo_padsize_divisibilitydo_center_crop	crop_size	do_resizesizeresamplePILImageResamplinginterpolationr   c                 C   s   | r
|du r
t d|r|du rt d|r"|du s|du r"t d|r,|du r,t d|dur8|dur8t d|	rJ|
durF|dusL|dusNt ddS dS dS )a  
    Checks validity of typically used arguments in an `ImageProcessor` `preprocess` method.
    Raises `ValueError` if arguments incompatibility is caught.
    Many incompatibilities are model-specific. `do_pad` sometimes needs `size_divisor`,
    sometimes `size_divisibility`, and sometimes `size`. New models and processors added should follow
    existing arguments when possible.

    Nz=`rescale_factor` must be specified if `do_rescale` is `True`.zzDepending on the model, `size_divisibility`, `size_divisor`, `pad_size` or `size` must be specified if `do_pad` is `True`.zP`image_mean` and `image_std` must both be specified if `do_normalize` is `True`.z<`crop_size` must be specified if `do_center_crop` is `True`.zbOnly one of `interpolation` and `resample` should be specified, depending on image processor type.zO`size` and `resample/interpolation` must be specified if `do_resize` is `True`.)r@   )r   r   r   r   r   r   r   r   r   r   r   r   r   r%   r%   r&   validate_preprocess_arguments  s"   r   c                   @   s   e Zd ZdZdd ZdddZdd Zd	ejd
e	e
ef dejfddZd ddZdd Zd!ddZd"ddZdd Zdd Zd#ddZdS )$ImageFeatureExtractionMixinzD
    Mixin that contain utilities for preparing image features.
    c                 C   s8   t |tjjtjfst|stdt| dd S d S )Nz	Got type zS which is not supported, only `PIL.Image.Image`, `np.array` and `torch.Tensor` are.)r0   r1   r2   rX   rY   r   r@   rA   selfrC   r%   r%   r&   _ensure_format_supportedB  s
   z4ImageFeatureExtractionMixin._ensure_format_supportedNc                 C   s   |  | t|r| }t|tjrE|du r t|jd tj}|jdkr3|j	d dv r3|
ddd}|r9|d }|tj}tj|S |S )a"  
        Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
        needed.

        Args:
            image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
                The image to convert to the PIL Image format.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
                default to `True` if the image type is a floating type, `False` otherwise.
        Nr   ri   r}   r   r~      )r   r   r9   r0   rX   rY   flatfloatingrl   r   	transposeastypere   r1   r2   	fromarray)r   rC   rescaler%   r%   r&   to_pil_imageI  s   
z(ImageFeatureExtractionMixin.to_pil_imagec                 C   s&   |  | t|tjjs|S |dS )z
        Converts `PIL.Image.Image` to RGB format.

        Args:
            image (`PIL.Image.Image`):
                The image to convert.
        r   )r   r0   r1   r2   r   r   r%   r%   r&   convert_rgbg  s   

z'ImageFeatureExtractionMixin.convert_rgbrC   scalerc   c                 C   s   |  | || S )z7
        Rescale a numpy image by scale amount
        )r   )r   rC   r   r%   r%   r&   r   u  s   
z#ImageFeatureExtractionMixin.rescaleTc                 C   s   |  | t|tjjrt|}t|r| }|du r&t|jd tj	n|}|r4| 
|tjd}|rB|jdkrB|ddd}|S )a  
        Converts `image` to a numpy array. Optionally rescales it and puts the channel dimension as the first
        dimension.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to convert to a NumPy array.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will
                default to `True` if the image is a PIL Image or an array/tensor of integers, `False` otherwise.
            channel_first (`bool`, *optional*, defaults to `True`):
                Whether or not to permute the dimensions of the image to put the channel dimension first.
        Nr   p?ri   r~   r   )r   r0   r1   r2   rX   rz   r   r9   r   integerr   r   float32rl   r   )r   rC   r   channel_firstr%   r%   r&   r{   |  s   

z*ImageFeatureExtractionMixin.to_numpy_arrayc                 C   sD   |  | t|tjjr|S t|r|d}|S tj|dd}|S )z
        Expands 2-dimensional `image` to 3 dimensions.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to expand.
        r   rT   )r   r0   r1   r2   r   	unsqueezerX   expand_dimsr   r%   r%   r&   r     s   

z'ImageFeatureExtractionMixin.expand_dimsFc                 C   sh  |  | t|tjjr| j|dd}n|r3t|tjr'| |tj	d}nt
|r3| | d}t|tjrXt|tjsHt||j}t|tjsWt||j}n6t
|rddl}t||jswt|tjrr||}n||}t||jst|tjr||}n||}|jdkr|jd dv r||ddddf  |ddddf  S || | S )a  
        Normalizes `image` with `mean` and `std`. Note that this will trigger a conversion of `image` to a NumPy array
        if it's a PIL Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to normalize.
            mean (`list[float]` or `np.ndarray` or `torch.Tensor`):
                The mean (per channel) to use for normalization.
            std (`list[float]` or `np.ndarray` or `torch.Tensor`):
                The standard deviation (per channel) to use for normalization.
            rescale (`bool`, *optional*, defaults to `False`):
                Whether or not to rescale the image to be between 0 and 1. If a PIL image is provided, scaling will
                happen automatically.
        T)r   r   r   Nri   r}   )r   r0   r1   r2   r{   rX   rY   r   r   r   r   floatrz   rd   r8   r[   
from_numpytensorrl   r   )r   rC   meanstdr   r8   r%   r%   r&   	normalize  s6   


(z%ImageFeatureExtractionMixin.normalizec                 C   sJ  |dur|nt j}| | t|tjjs| |}t|tr#t|}t|t	s.t
|dkr|rBt|t	r9||fn|d |d f}n\|j\}}||krO||fn||f\}}	t|t	r\|n|d }
||
krf|S |
t	|
|	 | }}|dur||
krtd| d| ||krt	|| | |}}||kr||fn||f}|j||dS )a  
        Resizes `image`. Enforces conversion of input to PIL.Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to resize.
            size (`int` or `tuple[int, int]`):
                The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be
                matched to this.

                If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
                `size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to
                this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
            resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                The filter to user for resampling.
            default_to_square (`bool`, *optional*, defaults to `True`):
                How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a
                square (`size`,`size`). If set to `False`, will replicate
                [`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
                with support for resizing only the smallest edge and providing an optional `max_size`.
            max_size (`int`, *optional*, defaults to `None`):
                The maximum allowed for the longer edge of the resized image: if the longer edge of the image is
                greater than `max_size` after being resized according to `size`, then the image is resized again so
                that the longer edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller
                edge may be shorter than `size`. Only used if `default_to_square` is `False`.

        Returns:
            image: A resized `PIL.Image.Image`.
        Nr   r   zmax_size = zN must be strictly greater than the requested size for the smaller edge size = )r   )r   BILINEARr   r0   r1   r2   r   rW   r_   r   r   r   r@   resize)r   rC   r   r   default_to_squaremax_sizer   r   shortlongrequested_new_short	new_shortnew_longr%   r%   r&   r     s4   


$
z"ImageFeatureExtractionMixin.resizec                 C   sx  |  | t|ts||f}t|st|tjr8|jdkr"| |}|jd dv r0|jdd n|jdd }n
|j	d |j	d f}|d |d  d }||d  }|d |d  d }||d  }t|t
jjrr|||||fS |jd dv }|st|tjr|ddd}t|r|ddd}|dkr||d kr|dkr||d kr|d||||f S |jdd t|d |d t|d |d f }	t|tjrtj||	d}
n	t|r||	}
|	d |d  d }||d  }|	d	 |d  d }||d  }||
d||||f< ||7 }||7 }||7 }||7 }|
dtd|t|
jd |td|t|
jd	 |f }
|
S )
a  
        Crops `image` to the given size using a center crop. Note that if the image is too small to be cropped to the
        size given, it will be padded (so the returned result has the size asked).

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape (n_channels, height, width) or (height, width, n_channels)):
                The image to resize.
            size (`int` or `tuple[int, int]`):
                The size to which crop the image.

        Returns:
            new_image: A center cropped `PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape: (n_channels,
            height, width).
        r~   r   r}   r   N.r   )r   r   )r   r0   r_   r   rX   rY   rl   r   r   r   r1   r2   cropr   permuterg   
zeros_like	new_zerosrf   )r   rC   r   image_shapetopbottomleftrightr   	new_shape	new_imagetop_pad
bottom_padleft_pad	right_padr%   r%   r&   center_crop'  sP   



,(2
4z'ImageFeatureExtractionMixin.center_cropc                 C   s>   |  | t|tjjr| |}|dddddddf S )a  
        Flips the channel order of `image` from RGB to BGR, or vice versa. Note that this will trigger a conversion of
        `image` to a NumPy array if it's a PIL Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image whose color channels to flip. If `np.ndarray` or `torch.Tensor`, the channel dimension should
                be first.
        Nr   )r   r0   r1   r2   r{   r   r%   r%   r&   flip_channel_orderr  s   


z.ImageFeatureExtractionMixin.flip_channel_orderr   c                 C   sL   |dur|nt jj}| | t|t jjs| |}|j||||||dS )a  
        Returns a rotated copy of `image`. This method returns a copy of `image`, rotated the given number of degrees
        counter clockwise around its centre.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to rotate. If `np.ndarray` or `torch.Tensor`, will be converted to `PIL.Image.Image` before
                rotating.

        Returns:
            image: A rotated `PIL.Image.Image`.
        N)r   expandcenter	translate	fillcolor)r1   r2   NEARESTr   r0   r   rotate)r   rC   angler   r  r  r  r  r%   r%   r&   r    s   

z"ImageFeatureExtractionMixin.rotater/   )NT)F)NTN)Nr   NNN)r    r!   r"   __doc__r   r   r   rX   rY   r   r   r   r   r{   r   r   r   r  r  r  r%   r%   r%   r&   r   =  s    
"
 

4CKr   annotation_formatsupported_annotation_formatsc                 C   sX   | |vrt dt d| | tju rt|st d| tju r(t|s*t dd S d S )NzUnsupported annotation format: z must be one of zInvalid COCO detection annotations. Annotations must a dict (single image) or list of dicts (batch of images) with the following keys: `image_id` and `annotations`, with the latter being a list of annotations in the COCO format.zInvalid COCO panoptic annotations. Annotations must a dict (single image) or list of dicts (batch of images) with the following keys: `image_id`, `file_name` and `segments_info`, with the latter being a list of annotations in the COCO format.)r@   formatr(   r+   r   r,   r   )r  r  r   r%   r%   r&   validate_annotations  s   

r  valid_processor_keyscaptured_kwargsc                 C   s:   t |t | }|rd|}td| d d S d S )Nz, zUnused or unrecognized kwargs: rk   )set
differencejoinr   r   )r  r  unused_keysunused_key_strr%   r%   r&   validate_kwargs  s
   
r#  T)frozenc                   @   sz   e Zd ZU dZdZee ed< dZee ed< dZ	ee ed< dZ
ee ed< dZee ed< dZee ed< d	d
 ZdS )SizeDictz>
    Hashable dictionary to store image size information.
    Nr   r   longest_edgeshortest_edger   r   c                 C   s$   t | |r
t| |S td| d)NzKey z not found in SizeDict.)hasattrgetattrKeyError)r   keyr%   r%   r&   __getitem__  s   

zSizeDict.__getitem__)r    r!   r"   r  r   r   r   __annotations__r   r&  r'  r   r   r,  r%   r%   r%   r&   r%    s   
 r%  )ri   r/   )NNNNNNNNNNNNN)dr   r   collections.abcr   dataclassesr   ior   typingr   r   r9   rX   r   	packagingr   utilsr	   r
   r   r   r   r   r   r   r   r   r   r   utils.constantsr   r   r   r   r   r   	PIL.Imager1   PIL.ImageOpsparse__version__base_versionr2   
Resamplingr   torchvision.transformsr   r  NEAREST_EXACTBOXr   HAMMINGBICUBICLANCZOSpil_torch_interpolation_mappingr8   
get_loggerr    r   rY   rW   
ImageInputr   r(   r-   r   r   r   AnnotationTyper5   r6   rD   rE   rN   r^   r`   rb   boolrh   rn   rx   ry   r{   r_   r   r   r   r   r   r   r   r   r   r   r   r   r   r  r#  r%  r%   r%   r%   r&   <module>   sB  8 


	)
(
'

(
"


""&&$-
	

0  a

