o
    tBh;                     @   s   d dl Zd dlmZ d dlmZ d dlZd dlZddlm	Z	m
Z
mZ ddlmZmZ ddlmZ ddlmZmZ g d	Zd
d ZdddddddZG dd dee
e	ZdS )    N)interpolate)	spearmanr   )BaseEstimatorTransformerMixinRegressorMixin)check_arraycheck_consistent_length)_check_sample_weight)'_inplace_contiguous_isotonic_regression_make_unique)check_increasingisotonic_regressionIsotonicRegressionc           	      C   s   t | |\}}|dk}|dvrNt| dkrNdtd| d|   }dtt| d  }t|d|  }t|d|  }t|t|krNt	d |S )	aG  Determine whether y is monotonically correlated with x.

    y is found increasing or decreasing with respect to x based on a Spearman
    correlation test.

    Parameters
    ----------
    x : array-like of shape (n_samples,)
            Training data.

    y : array-like of shape (n_samples,)
        Training target.

    Returns
    -------
    increasing_bool : boolean
        Whether the relationship is increasing or decreasing.

    Notes
    -----
    The Spearman correlation coefficient is estimated from the data, and the
    sign of the resulting estimate is used as the result.

    In the event that the 95% confidence interval based on Fisher transform
    spans zero, a warning is raised.

    References
    ----------
    Fisher transformation. Wikipedia.
    https://en.wikipedia.org/wiki/Fisher_transformation
    r   )g            ?   g      ?r   r   g\(\?zwConfidence interval of the Spearman correlation coefficient spans zero. Determination of ``increasing`` may be suspect.)
r   lenmathlogsqrttanhnpsignwarningswarn)	xyrho_increasing_boolFF_serho_0rho_1 r$   g/var/www/html/riverr-enterprise-integrations-main/venv/lib/python3.10/site-packages/sklearn/isotonic.pyr      s   "r   Tsample_weighty_miny_max
increasingc                C   s   |r	t jdd nt jddd }t| ddt jt jgd} t j| | | jd} t|| | jdd}t || }t	| | |dusD|dur[|du rLt j
 }|du rSt j
}t | |||  | | S )	a  Solve the isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    Parameters
    ----------
    y : array-like of shape (n_samples,)
        The data.

    sample_weight : array-like of shape (n_samples,), default=None
        Weights on each point of the regression.
        If None, weight is set to 1 (equal weights).

    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool, default=True
        Whether to compute ``y_`` is increasing (if set to True) or decreasing
        (if set to False).

    Returns
    -------
    y_ : list of floats
        Isotonic fit of y.

    References
    ----------
    "Active set algorithms for isotonic regression; A unifying framework"
    by Michael J. Best and Nilotpal Chakravarti, section 3.
    NFr   )	ensure_2d
input_namedtyper.   T)r.   copy)r   s_r   float64float32arrayr.   r
   ascontiguousarrayr   infclip)r   r'   r(   r)   r*   orderr$   r$   r%   r   P   s   "&
r   c                       s   e Zd ZdZdddddddZdd	 Zd
d ZdddZdddZdd Z	dd Z
dddZ fddZ fddZdd Z  ZS )r   a  Isotonic regression model.

    Read more in the :ref:`User Guide <isotonic>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    y_min : float, default=None
        Lower bound on the lowest predicted value (the minimum value may
        still be higher). If not set, defaults to -inf.

    y_max : float, default=None
        Upper bound on the highest predicted value (the maximum may still be
        lower). If not set, defaults to +inf.

    increasing : bool or 'auto', default=True
        Determines whether the predictions should be constrained to increase
        or decrease with `X`. 'auto' will decide based on the Spearman
        correlation estimate's sign.

    out_of_bounds : {'nan', 'clip', 'raise'}, default='nan'
        Handles how `X` values outside of the training domain are handled
        during prediction.

        - 'nan', predictions will be NaN.
        - 'clip', predictions will be set to the value corresponding to
          the nearest train interval endpoint.
        - 'raise', a `ValueError` is raised.

    Attributes
    ----------
    X_min_ : float
        Minimum value of input array `X_` for left bound.

    X_max_ : float
        Maximum value of input array `X_` for right bound.

    X_thresholds_ : ndarray of shape (n_thresholds,)
        Unique ascending `X` values used to interpolate
        the y = f(X) monotonic function.

        .. versionadded:: 0.24

    y_thresholds_ : ndarray of shape (n_thresholds,)
        De-duplicated `y` values suitable to interpolate the y = f(X)
        monotonic function.

        .. versionadded:: 0.24

    f_ : function
        The stepwise interpolating function that covers the input domain ``X``.

    increasing_ : bool
        Inferred value for ``increasing``.

    See Also
    --------
    sklearn.linear_model.LinearRegression : Ordinary least squares Linear
        Regression.
    sklearn.ensemble.HistGradientBoostingRegressor : Gradient boosting that
        is a non-parametric model accepting monotonicity constraints.
    isotonic_regression : Function to solve the isotonic regression model.

    Notes
    -----
    Ties are broken using the secondary method from de Leeuw, 1977.

    References
    ----------
    Isotonic Median Regression: A Linear Programming Approach
    Nilotpal Chakravarti
    Mathematics of Operations Research
    Vol. 14, No. 2 (May, 1989), pp. 303-308

    Isotone Optimization in R : Pool-Adjacent-Violators
    Algorithm (PAVA) and Active Set Methods
    de Leeuw, Hornik, Mair
    Journal of Statistical Software 2009

    Correctness of Kruskal's algorithms for monotone regression with ties
    de Leeuw, Psychometrica, 1977

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.isotonic import IsotonicRegression
    >>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
    >>> iso_reg = IsotonicRegression().fit(X, y)
    >>> iso_reg.predict([.1, .2])
    array([1.8628..., 3.7256...])
    NTnanr(   r)   r*   out_of_boundsc                C   s   || _ || _|| _|| _d S Nr:   )selfr(   r)   r*   r;   r$   r$   r%   __init__   s   
zIsotonicRegression.__init__c                 C   s6   |j dks|j dkr|jd dksd}t|d S d S )Nr      zKIsotonic regression input X should be a 1d array or 2d array with 1 feature)ndimshape
ValueError)r=   Xmsgr$   r$   r%   _check_input_data_shape   s
   "z*IsotonicRegression._check_input_data_shapec                    sZ   | j dvrtd| j | j dk}t dkr! fdd| _d	S tj| d|d| _d	S )
zBuild the f_ interp1d function.raiser9   r7   IThe argument ``out_of_bounds`` must be in 'nan', 'clip', 'raise'; got {0}rG   r   c                    s     | jS r<   )repeatrA   )r   r   r$   r%   <lambda>   s    z-IsotonicRegression._build_f.<locals>.<lambda>linear)kindbounds_errorN)r;   rB   formatr   f_r   interp1d)r=   rC   r   rN   r$   rJ   r%   _build_f   s   

zIsotonicRegression._build_fc           
   	      sP  |  | |d}| jdkrt||| _n| j| _t|||jd}|dk}|| || || }}}t||f  fdd|||fD \}}}t	|||\}}}|}t
||| j| j| jd}t|t|| _| _|rtjt|ftd}	tt|dd |d	d
 t|dd |dd	 |	dd< ||	 ||	 fS ||fS )z Build the y_ IsotonicRegression.r+   autor/   r   c                    s   g | ]}|  qS r$   r$   ).0r4   r8   r$   r%   
<listcomp>  s    z/IsotonicRegression._build_y.<locals>.<listcomp>r&   r   Nr?   )rE   reshaper*   r   increasing_r
   r.   r   lexsortr   r   r(   r)   minmaxX_min_X_max_onesr   bool
logical_or	not_equal)
r=   rC   r   r'   trim_duplicatesmaskunique_Xunique_yunique_sample_weight	keep_datar$   rU   r%   _build_y  s6   


	4zIsotonicRegression._build_yc                 C   s~   t ddd}t|fdtjtjgd|}t|fd|jd|}t||| | |||\}}||| _| _	| 
|| | S )a  Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like of shape (n_samples,) or (n_samples, 1)
            Training data.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        y : array-like of shape (n_samples,)
            Training target.

        sample_weight : array-like of shape (n_samples,), default=None
            Weights. If set to None, all weights will be set to 1 (equal
            weights).

        Returns
        -------
        self : object
            Returns an instance of self.

        Notes
        -----
        X is stored for future use, as :meth:`transform` needs X to interpolate
        new input data.
        F)accept_sparser,   rC   )r-   r.   r   )dictr   r   r2   r3   r.   r	   ri   X_thresholds_y_thresholds_rR   )r=   rC   r   r'   check_paramsr$   r$   r%   fit7  s   zIsotonicRegression.fitc                 C   s   t | dr
| jj}ntj}t||dd}| | |d}| jdvr+t	d
| j| jdkr9t|| j| j}| |}||j}|S )a  Transform new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

            .. versionchanged:: 0.24
               Also accepts 2d array with 1 feature.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            The transformed data.
        rl   F)r.   r,   r+   rF   rH   r7   )hasattrrl   r.   r   r2   r   rE   rX   r;   rB   rO   r7   r]   r^   rP   astype)r=   Tr.   resr$   r$   r%   	transformh  s    






zIsotonicRegression.transformc                 C   s
   |  |S )a%  Predict new data by linear interpolation.

        Parameters
        ----------
        T : array-like of shape (n_samples,) or (n_samples, 1)
            Data to transform.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            Transformed data.
        )rt   )r=   rr   r$   r$   r%   predict  s   
zIsotonicRegression.predictc                 C   s"   | j j }tj| dgtdS )aK  Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Ignored.

        Returns
        -------
        feature_names_out : ndarray of str objects
            An ndarray with one string i.e. ["isotonicregression0"].
        0r/   )	__class____name__lowerr   asarrayobject)r=   input_features
class_namer$   r$   r%   get_feature_names_out  s   z(IsotonicRegression.get_feature_names_outc                    s   t   }|dd |S )z0Pickle-protocol - return state of the estimator.rP   N)super__getstate__popr=   staterw   r$   r%   r     s   
zIsotonicRegression.__getstate__c                    s<   t  | t| drt| dr| | j| j dS dS dS )znPickle-protocol - set state of the estimator.

        We need to rebuild the interpolation function.
        rl   rm   N)r   __setstate__rp   rR   rl   rm   r   r   r$   r%   r     s   zIsotonicRegression.__setstate__c                 C   s
   ddgiS )NX_types1darrayr$   )r=   r$   r$   r%   
_more_tags  s   
zIsotonicRegression._more_tags)Tr<   )rx   
__module____qualname____doc__r>   rE   rR   ri   ro   rt   ru   r~   r   r   r   __classcell__r$   r$   r   r%   r      s    ]

11,
	r   )numpyr   scipyr   scipy.statsr   r   r   baser   r   r   utilsr   r	   utils.validationr
   	_isotonicr   r   __all__r   r   r   r$   r$   r$   r%   <module>   s   <7