o
    tBh5I                  	   @   s>  d Z ddlmZmZmZ ddlmZmZmZ ddl	Z	ddl
ZddlmZ ddlmZmZmZmZ dd	lmZ e	eZed
dddZeddddZeddddeddddeddddfZd0ddZdd Z	d1d d!Zddd"dded#d$ed%d&fddd'd(d)Z	d2d*d+Z d,ddd"ded#d$ed%d&fdd-d.d/Z!dS )3zLabeled Faces in the Wild (LFW) dataset

This dataset is a collection of JPEG pictures of famous people collected
over the internet, all details are available on the official website:

    http://vis-www.cs.umass.edu/lfw/
    )listdirmakedirsremove)joinexistsisdirN)Memory   )get_data_home_fetch_remoteRemoteFileMetadata
load_descr   )Bunchzlfw.tgzz.https://ndownloader.figshare.com/files/5976018@055f7d9c632d7370e6fb4afc7468d40f970c34a80d4c6f50ffec63f5a8d536c0)filenameurlchecksumzlfw-funneled.tgzz.https://ndownloader.figshare.com/files/5976015@b47c8422c8cded889dc5a13418c4bc2abbda121092b3533a83306f90d900100apairsDevTrain.txtz.https://ndownloader.figshare.com/files/5976012@1d454dada7dfeca0e7eab6f65dc4e97a6312d44cf142207be28d688be92aabfapairsDevTest.txtz.https://ndownloader.figshare.com/files/5976009@7cb06600ea8b2814ac26e946201cdb304296262aad67d046a16a7ec85d0ff87c	pairs.txtz.https://ndownloader.figshare.com/files/5976006@ea42330c62c92989f9d7c03237ed5d591365e89b3e649747777b70e692dc1592Tc           
      C   s  t | d} t| d}t|st| tD ]"}t||j}t|s6|r0td|j t	||d qt
d| q|rAt|d}t}nt|d}t}t|st||j}t|sl|rftd|j t	||d nt
d| d	d
l}	td| |	|dj|d t| ||fS )z0Helper function to download any missing LFW data)	data_homelfw_homezDownloading LFW metadata: %s)dirnamez%s is missinglfw_funneledlfwz!Downloading LFW data (~200MB): %sr   Nz$Decompressing the data archive to %szr:gz)path)r
   r   r   r   TARGETSr   loggerinfor   r   IOErrorFUNNELED_ARCHIVEARCHIVEtarfiledebugopen
extractallr   )
r   funneleddownload_if_missingr   targettarget_filepathdata_folder_patharchivearchive_pathr'    r2   l/var/www/html/riverr-enterprise-integrations-main/venv/lib/python3.10/site-packages/sklearn/datasets/_lfw.py_check_fetch_lfwJ   s:   



r4   c                 C   s  zddl m} W n ty   tdw tddtddf}|du r%|}ntdd t||D }|\}}|j|j |jp>d }|j|j |jpId }	|dur_t	|}t
|| }t
||	 }	t| }
|sqtj|
||	ftjd	}ntj|
||	d
ftjd	}t| D ]U\}}|d dkrtd|d |
 ||}||j|j|j|jf |dur||	|f}tj|tjd	}|jdkrtd| |d }|s|jdd}|||df< q|S )zInternally used to load imagesr   )ImagezThe Python Imaging Library (PIL) is required to load data from jpeg files. Please refer to https://pillow.readthedocs.io/en/stable/installation.html for installing PIL.   Nc                 s   s    | ]	\}}|p	|V  qd S )Nr2   ).0sdsr2   r2   r3   	<genexpr>   s    z_load_imgs.<locals>.<genexpr>r	   dtype   i  zLoading face #%05d / %05dzLFailed to read the image file %s, Please make sure that libjpeg is installedg     o@r   )axis.)PILr5   ImportErrorslicetuplezipstopstartstepfloatintlennpzerosfloat32	enumerater"   r(   r)   cropresizeasarrayndimRuntimeErrormean)
file_pathsslice_colorrO   r5   default_sliceh_slicew_slicehwn_facesfacesi	file_pathpil_imgfacer2   r2   r3   
_load_imgsu   sR   


rb   Fc                    s   g g }}t t| D ]4}t| | t sq fddt t D }t|}	|	|kr?|dd}||g|	  || qt|}
|
dkrNtd| t	|}t
||}t||||}t|
}tjd| || || }}|||fS )z~Perform the actual data loading for the lfw people dataset

    This operation is meant to be cached by a joblib wrapper.
    c                    s   g | ]}t  |qS r2   )r   )r7   ffolder_pathr2   r3   
<listcomp>   s    z%_fetch_lfw_people.<locals>.<listcomp>_ r   z*min_faces_per_person=%d is too restrictive*   )sortedr   r   r   rI   replaceextend
ValueErrorrJ   uniquesearchsortedrb   arangerandomRandomStateshuffle)r/   rU   rV   rO   min_faces_per_personperson_namesrT   person_namepaths
n_picturesr\   target_namesr-   r]   indicesr2   rd   r3   _fetch_lfw_people   s0   
	




r{   g      ?F      N      )r   r+   rO   rt   rV   rU   r,   
return_X_yc                 C   s   t | ||d\}}	td| t|ddd}
|
t}||	||||d\}}}|t|d}td}|r9||fS t	|||||d	S )
a  Load the Labeled Faces in the Wild (LFW) people dataset (classification).

    Download it if necessary.

    =================   =======================
    Classes                                5749
    Samples total                         13233
    Dimensionality                         5828
    Features            real, between 0 and 255
    =================   =======================

    Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`.

    Parameters
    ----------
    data_home : str, default=None
        Specify another download and cache folder for the datasets. By default
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    funneled : bool, default=True
        Download and use the funneled variant of the dataset.

    resize : float, default=0.5
        Ratio used to resize the each face picture.

    min_faces_per_person : int, default=None
        The extracted dataset will only retain pictures of people that have at
        least `min_faces_per_person` different pictures.

    color : bool, default=False
        Keep the 3 RGB channels instead of averaging them to a single
        gray level channel. If color is True the shape of the data has
        one more dimension than the shape with color = False.

    slice_ : tuple of slice, default=(slice(70, 195), slice(78, 172))
        Provide a custom 2D slice (height, width) to extract the
        'interesting' part of the jpeg files and avoid use statistical
        correlation from the background

    download_if_missing : bool, default=True
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    return_X_y : bool, default=False
        If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch
        object. See below for more information about the `dataset.data` and
        `dataset.target` object.

        .. versionadded:: 0.20

    Returns
    -------
    dataset : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : numpy array of shape (13233, 2914)
            Each row corresponds to a ravelled face image
            of original size 62 x 47 pixels.
            Changing the ``slice_`` or resize parameters will change the
            shape of the output.
        images : numpy array of shape (13233, 62, 47)
            Each row is a face image corresponding to one of the 5749 people in
            the dataset. Changing the ``slice_``
            or resize parameters will change the shape of the output.
        target : numpy array of shape (13233,)
            Labels associated to each face image.
            Those labels range from 0-5748 and correspond to the person IDs.
        DESCR : str
            Description of the Labeled Faces in the Wild (LFW) dataset.

    (data, target) : tuple if ``return_X_y`` is True

        .. versionadded:: 0.20

    r   r+   r,   z Loading LFW people faces from %s   r   locationcompressverbose)rO   rt   rV   rU   lfw.rst)dataimagesr-   ry   DESCR)
r4   r"   r(   r   cacher{   reshaperI   r   r   )r   r+   rO   rt   rV   rU   r,   r   r   r/   m	load_funcr]   r-   ry   Xfdescrr2   r2   r3   fetch_lfw_people   s(   W


r   c              
   C   s  t | d}dd |D }W d   n1 sw   Y  dd |D }t|}tj|td}	t }
t|D ]\}}t|dkr\d|	|< |d	 t|d d f|d	 t|d
 d ff}n-t|dkrd	|	|< |d	 t|d d f|d
 t|d d ff}n
td|d |f t|D ]3\}\}}zt||}W n t	y   t|t
|d}Y nw ttt|}t||| }|
| qq5t|
|||}t|j}|d	}|d	d
 |d	|d
  ||_||	tddgfS )z}Perform the actual data loading for the LFW pairs dataset

    This operation is meant to be cached by a joblib wrapper.
    rbc                 S   s   g | ]}|   d qS )	)decodestripsplit)r7   lnr2   r2   r3   rf   n  s    z$_fetch_lfw_pairs.<locals>.<listcomp>Nc                 S   s   g | ]
}t |d kr|qS )r   )rI   )r7   slr2   r2   r3   rf   o  s    r;   r=   r	   r   r      zinvalid line %d: %rzUTF-8zDifferent personszSame person)r)   rI   rJ   rK   rH   listrM   rm   r   	TypeErrorstrrj   r   appendrb   shapepopinsertarray)index_file_pathr/   rU   rV   rO   
index_filesplit_lines
pair_specsn_pairsr-   rT   r^   
componentspairjnameidxperson_folder	filenamesr_   pairsr   r\   r2   r2   r3   _fetch_lfw_pairsd  sH   		

r   train)subsetr   r+   rO   rV   rU   r,   c                 C   s   t |||d\}}td| | t|ddd}	|	t}
dddd	}| |vr4td
| tt|	 f t
|||  }|
|||||d\}}}td}t|t|d||||dS )a  Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).

    Download it if necessary.

    =================   =======================
    Classes                                   2
    Samples total                         13233
    Dimensionality                         5828
    Features            real, between 0 and 255
    =================   =======================

    In the official `README.txt`_ this task is described as the
    "Restricted" task.  As I am not sure as to implement the
    "Unrestricted" variant correctly, I left it as unsupported for now.

      .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt

    The original images are 250 x 250 pixels, but the default slice and resize
    arguments reduce them to 62 x 47.

    Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`.

    Parameters
    ----------
    subset : {'train', 'test', '10_folds'}, default='train'
        Select the dataset to load: 'train' for the development training
        set, 'test' for the development test set, and '10_folds' for the
        official evaluation set that is meant to be used with a 10-folds
        cross validation.

    data_home : str, default=None
        Specify another download and cache folder for the datasets. By
        default all scikit-learn data is stored in '~/scikit_learn_data'
        subfolders.

    funneled : bool, default=True
        Download and use the funneled variant of the dataset.

    resize : float, default=0.5
        Ratio used to resize the each face picture.

    color : bool, default=False
        Keep the 3 RGB channels instead of averaging them to a single
        gray level channel. If color is True the shape of the data has
        one more dimension than the shape with color = False.

    slice_ : tuple of slice, default=(slice(70, 195), slice(78, 172))
        Provide a custom 2D slice (height, width) to extract the
        'interesting' part of the jpeg files and avoid use statistical
        correlation from the background

    download_if_missing : bool, default=True
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : ndarray of shape (2200, 5828). Shape depends on ``subset``.
            Each row corresponds to 2 ravel'd face images
            of original size 62 x 47 pixels.
            Changing the ``slice_``, ``resize`` or ``subset`` parameters
            will change the shape of the output.
        pairs : ndarray of shape (2200, 2, 62, 47). Shape depends on ``subset``
            Each row has 2 face images corresponding
            to same or different person from the dataset
            containing 5749 people. Changing the ``slice_``,
            ``resize`` or ``subset`` parameters will change the shape of the
            output.
        target : numpy array of shape (2200,). Shape depends on ``subset``.
            Labels associated to each pair of images.
            The two label values being different persons or the same person.
        DESCR : str
            Description of the Labeled Faces in the Wild (LFW) dataset.

    r   zLoading %s LFW pairs from %sr   r   r   r   r   r   )r   test10_foldsz+subset='%s' is invalid: should be one of %r)rO   rV   rU   r   r   )r   r   r-   ry   r   )r4   r"   r(   r   r   r   rm   r   rj   keysr   r   r   r   rI   )r   r   r+   rO   rV   rU   r,   r   r/   r   r   label_filenamesr   r   r-   ry   r   r2   r2   r3   fetch_lfw_pairs  s8   X


r   )NTT)NFNr   )NFN)"__doc__osr   r   r   os.pathr   r   r   loggingnumpyrJ   joblibr   _baser
   r   r   r   utilsr   	getLogger__name__r"   r&   r%   r!   r4   rb   r{   rA   r   r   r   r2   r2   r2   r3   <module>   st    


+I
-}
6