o
    tBh                     @   sR   d dl ZddlmZ ddlmZ ddlmZmZ ddl	m
Z
 G dd	 d	eeZdS )
    N   )BaseEstimator   )SelectorMixin)mean_variance_axismin_max_axis)check_is_fittedc                   @   s4   e Zd ZdZdddZdddZdd	 Zd
d ZdS )VarianceThresholdat  Feature selector that removes all low-variance features.

    This feature selection algorithm looks only at the features (X), not the
    desired outputs (y), and can thus be used for unsupervised learning.

    Read more in the :ref:`User Guide <variance_threshold>`.

    Parameters
    ----------
    threshold : float, default=0
        Features with a training-set variance lower than this threshold will
        be removed. The default is to keep all features with non-zero variance,
        i.e. remove the features that have the same value in all samples.

    Attributes
    ----------
    variances_ : array, shape (n_features,)
        Variances of individual features.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    SelectFromModel: Meta-transformer for selecting features based on
        importance weights.
    SelectPercentile : Select features according to a percentile of the highest
        scores.
    SequentialFeatureSelector : Transformer that performs Sequential Feature
        Selection.

    Notes
    -----
    Allows NaN in the input.
    Raises ValueError if no feature in X meets the variance threshold.

    Examples
    --------
    The following dataset has integer features, two of which are the same
    in every sample. These are removed with the default setting for threshold::

        >>> from sklearn.feature_selection import VarianceThreshold
        >>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
        >>> selector = VarianceThreshold()
        >>> selector.fit_transform(X)
        array([[2, 0],
               [1, 4],
               [1, 1]])
            c                 C   s
   || _ d S N)	threshold)selfr    r   /var/www/html/riverr-enterprise-integrations-main/venv/lib/python3.10/site-packages/sklearn/feature_selection/_variance_threshold.py__init__F   s   
zVarianceThreshold.__init__Nc           	      C   s  | j |dtjdd}t|dr*t|dd\}| _| jdkr)t|dd\}}|| }ntj|dd| _| jdkr>tj	|dd}| jdkrTt
| j|g}tj|dd| _n| jdk ratd| j tt| j | j| jkB rd	}|jd d
kr~|d7 }t|| j| S )a  Learn empirical variances from X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Data from which to compute variances, where `n_samples` is
            the number of samples and `n_features` is the number of features.

        y : any, default=None
            Ignored. This parameter exists only for compatibility with
            sklearn.pipeline.Pipeline.

        Returns
        -------
        self : object
            Returns the instance itself.
        )csrcscz	allow-nan)accept_sparsedtypeforce_all_finitetoarrayr   )axisr
   z%Threshold must be non-negative. Got: z4No feature in X meets the variance threshold {0:.5f}r   z (X contains only one sample))_validate_datanpfloat64hasattrr   
variances_r   r   nanvarptparraynanmin
ValueErrorallisfiniteshapeformat)	r   Xy_minsmaxespeak_to_peakscompare_arrmsgr   r   r   fitI   s4   




 zVarianceThreshold.fitc                 C   s   t |  | j| jkS r   )r   r   r   r   r   r   r   _get_support_mask|   s   z#VarianceThreshold._get_support_maskc                 C   s   ddiS )N	allow_nanTr   r/   r   r   r   
_more_tags   s   zVarianceThreshold._more_tags)r
   r   )__name__
__module____qualname____doc__r   r.   r0   r2   r   r   r   r   r	      s    
:
3r	   )numpyr   baser   _baser   utils.sparsefuncsr   r   utils.validationr   r	   r   r   r   r   <module>   s   