o
    tBh                     @   s   d Z ddlZddlmZ ddlZddlmZ ddlm	Z	 ddl
mZ ddlmZmZmZ d	d
lmZmZ d	dlmZmZ d	dlmZ d	dlmZ dZd"ddZ					d#ddZdddddddddZddddddddddZG dd deeeZ				d$ddZ G d d! d!eeZ!dS )%z'Orthogonal matching pursuit algorithms
    N)sqrt)linalg)get_lapack_funcs)Parallel   )LinearModel_pre_fit_deprecate_normalize   )RegressorMixinMultiOutputMixin)as_float_arraycheck_array)delayed)check_cvzOrthogonal matching pursuit ended prematurely due to linear dependence in the dictionary. The requested precision might not have been met.TFc                 C   s  |r|  d} nt| } t| jj}td| f\}}td| f\}	t	| j
|}
|}td}d}t| jd }|durE| jd n|}tj||f| jd}|rXt|}	 ttt	| j
|}||k sr|
| d	 |k r{tjttd	d
 n|dkrt	| ddd|f j
| dd|f ||d|f< tj|d|d|f ||d|f ddddd |||d|f d	 }t| dd|f d	 | }||krtjttd	d
 nt||||f< nt| dd|f |d< || j
| | j
| \| j
|< | j
|< |
| |
| |
|< |
|< || || ||< ||< |d7 }|	|d|d|f |
d| ddd\}}|rE||d||d f< |t	| ddd|f | }|durd||d	 |krdn||krjnqY|r||d| |ddd|f |fS ||d| |fS )a  Orthogonal Matching Pursuit step using the Cholesky decomposition.

    Parameters
    ----------
    X : ndarray of shape (n_samples, n_features)
        Input dictionary. Columns are assumed to have unit norm.

    y : ndarray of shape (n_samples,)
        Input targets.

    n_nonzero_coefs : int
        Targeted number of non-zero elements.

    tol : float, default=None
        Targeted squared error, if not None overrides n_nonzero_coefs.

    copy_X : bool, default=True
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    return_path : bool, default=False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    Returns
    -------
    gamma : ndarray of shape (n_nonzero_coefs,)
        Non-zero elements of the solution.

    idx : ndarray of shape (n_nonzero_coefs,)
        Indices of the positions of the elements in gamma within the solution
        vector.

    coef : ndarray of shape (n_features, n_nonzero_coefs)
        The first k values of column k correspond to the coefficient value
        for the active features at that step. The lower left triangle contains
        garbage. Only returned if ``return_path=True``.

    n_active : int
        Number of active features at convergence.
    Fnrm2swappotrsr   r   NdtypeTr
   
stacklevelFtransloweroverwrite_bcheck_finiter   r   r   r   )copynpasfortranarrayfinfor   epsr   get_blas_funcsr   dotTemptyarangeshape
empty_likeargmaxabswarningswarn	prematureRuntimeWarningsolve_triangularnormr   )Xyn_nonzero_coefstolcopy_Xreturn_path	min_floatr   r   r   alpharesidualgamman_activeindicesmax_featuresLcoefslamvLkk_ rI   p/var/www/html/riverr-enterprise-integrations-main/venv/lib/python3.10/site-packages/sklearn/linear_model/_omp.py_cholesky_omp   sn   +


6& 
 
-$rK   c                 C   s.  |r|  dnt| } |s|jjs|  }t| jj}t	d| f\}	}
t
d| f\}tt| }|}|}d}td}d}|durIt| n|}tj||f| jd}d|d< |r`t|}	 tt|}||k su|| d
 |k r~tjttdd n|dkr| |d|f ||d|f< tj|d|d|f ||d|f ddd	dd |	||d|f d
 }| ||f | }||krtjttdd nt||||f< n
t| ||f |d< |
| | | | \| |< | |< |
| j| | j| \| j|< | j|< || || ||< ||< || || ||< ||< |d7 }||d|d|f |d| d	dd\}}|r@||d||d f< t| ddd|f |}|| }|durr||7 }t||d| }||8 }t||krqnn||krxnqa|r||d| |ddd|f |fS ||d| |fS )a  Orthogonal Matching Pursuit step on a precomputed Gram matrix.

    This function uses the Cholesky decomposition method.

    Parameters
    ----------
    Gram : ndarray of shape (n_features, n_features)
        Gram matrix of the input data matrix.

    Xy : ndarray of shape (n_features,)
        Input targets.

    n_nonzero_coefs : int
        Targeted number of non-zero elements.

    tol_0 : float, default=None
        Squared norm of y, required if tol is not None.

    tol : float, default=None
        Targeted squared error, if not None overrides n_nonzero_coefs.

    copy_Gram : bool, default=True
        Whether the gram matrix must be copied by the algorithm. A false
        value is only helpful if it is already Fortran-ordered, otherwise a
        copy is made anyway.

    copy_Xy : bool, default=True
        Whether the covariance vector Xy must be copied by the algorithm.
        If False, it may be overwritten.

    return_path : bool, default=False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    Returns
    -------
    gamma : ndarray of shape (n_nonzero_coefs,)
        Non-zero elements of the solution.

    idx : ndarray of shape (n_nonzero_coefs,)
        Indices of the positions of the elements in gamma within the solution
        vector.

    coefs : ndarray of shape (n_features, n_nonzero_coefs)
        The first k values of column k correspond to the coefficient value
        for the active features at that step. The lower left triangle contains
        garbage. Only returned if ``return_path=True``.

    n_active : int
        Number of active features at convergence.
    r   r   r   r   Nr   g      ?r    Tr
      r   r   Fr   r!   )r"   r#   r$   flags	writeabler%   r   r&   r   r'   r   r+   lenr*   r-   r.   r/   r0   r1   r2   r3   r4   r   r)   r(   inner)GramXyr8   tol_0r9   	copy_Gramcopy_Xyr;   r<   r   r   r   rA   r=   tol_currdeltar?   r@   rB   rC   rD   rE   rF   rG   rH   betarI   rI   rJ   	_gram_omp   s   =

& 


/$rY   )r8   r9   
precomputer:   r;   return_n_iterc             
   C   sr  t | d|d} d}|jdkr|dd}t |}|jd dkr!d}|du r5|du r5ttd| jd  d}|durA|d	k rAtd
|du rM|d	krMtd|du r\|| jd kr\td|dkrj| jd	 | jd k}|rt| j	| }t
|}t| j	|}	|durtj|d d	d}
nd}
t||	|||
|d|dS |rt| jd |jd | jd f}nt| jd |jd f}g }t|jd D ]X}t| |dd|f ||||d}|r|\}}}}|dddddt|f }t|j	D ]\}}|d|d  ||d|d  ||f< qn|\}}}||||f< || q|jd dkr*|d	 }|r4t||fS t|S )a0  Orthogonal Matching Pursuit (OMP).

    Solves n_targets Orthogonal Matching Pursuit problems.
    An instance of the problem has the form:

    When parametrized by the number of non-zero coefficients using
    `n_nonzero_coefs`:
    argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs}

    When parametrized by error using the parameter `tol`:
    argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol

    Read more in the :ref:`User Guide <omp>`.

    Parameters
    ----------
    X : ndarray of shape (n_samples, n_features)
        Input data. Columns are assumed to have unit norm.

    y : ndarray of shape (n_samples,) or (n_samples, n_targets)
        Input targets.

    n_nonzero_coefs : int, default=None
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol : float, default=None
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    precompute : 'auto' or bool, default=False
        Whether to perform precomputations. Improves performance when n_targets
        or n_samples is very large.

    copy_X : bool, default=True
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    return_path : bool, default=False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    return_n_iter : bool, default=False
        Whether or not to return the number of iterations.

    Returns
    -------
    coef : ndarray of shape (n_features,) or (n_features, n_targets)
        Coefficients of the OMP solution. If `return_path=True`, this contains
        the whole coefficient path. In this case its shape is
        (n_features, n_features) or (n_features, n_targets, n_features) and
        iterating over the last axis generates coefficients in increasing order
        of active features.

    n_iters : array-like or int
        Number of active features across every target. Returned only if
        `return_n_iter` is set to True.

    See Also
    --------
    OrthogonalMatchingPursuit : Orthogonal Matching Pursuit model.
    orthogonal_mp_gram : Solve OMP problems using Gram matrix and the product X.T * y.
    lars_path : Compute Least Angle Regression or Lasso path using LARS algorithm.
    sklearn.decomposition.sparse_encode : Sparse coding.

    Notes
    -----
    Orthogonal matching pursuit was introduced in S. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
    r   orderr"   Fr   TN皙?r   Epsilon cannot be negative$The number of atoms must be positive>The number of atoms cannot be more than the number of featuresautor
   axis)r8   r9   norms_squaredrT   rU   r;   )r:   r;   )r   ndimreshaper,   maxint
ValueErrorr#   r(   r)   r$   sumorthogonal_mp_gramzerosrangerK   rO   	enumerateappendsqueeze)r6   r7   r8   r9   rZ   r:   r;   r[   GrR   rf   coefn_iterskoutrH   idxrD   n_iterr@   xrI   rI   rJ   orthogonal_mp  st   X

$(

r{   )r8   r9   rf   rT   rU   r;   r[   c                C   sJ  t | d|d} t|}|jdkr|jd dkrd}|jdkr/|ddtjf }|dur/|g}|s5|jjs9| }|du rI|du rIt	dt
|  }|durU|du rUtd|dura|dk ratd	|du rm|dkrmtd
|du r{|t
| kr{td|rtjt
| |jd t
| f| jd}	ntjt
| |jd f| jd}	g }
t|jd D ]a}t| |dd|f ||dur|| nd||d|d}|r|\}}}}|	dddddt
|f }	t|jD ]\}}|d|d  |	|d|d  ||f< qn|\}}}||	||f< |
| q|jd dkr|
d }
|r t|	|
fS t|	S )a
  Gram Orthogonal Matching Pursuit (OMP).

    Solves n_targets Orthogonal Matching Pursuit problems using only
    the Gram matrix X.T * X and the product X.T * y.

    Read more in the :ref:`User Guide <omp>`.

    Parameters
    ----------
    Gram : ndarray of shape (n_features, n_features)
        Gram matrix of the input data: X.T * X.

    Xy : ndarray of shape (n_features,) or (n_features, n_targets)
        Input targets multiplied by X: X.T * y.

    n_nonzero_coefs : int, default=None
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol : float, default=None
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    norms_squared : array-like of shape (n_targets,), default=None
        Squared L2 norms of the lines of y. Required if tol is not None.

    copy_Gram : bool, default=True
        Whether the gram matrix must be copied by the algorithm. A false
        value is only helpful if it is already Fortran-ordered, otherwise a
        copy is made anyway.

    copy_Xy : bool, default=True
        Whether the covariance vector Xy must be copied by the algorithm.
        If False, it may be overwritten.

    return_path : bool, default=False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    return_n_iter : bool, default=False
        Whether or not to return the number of iterations.

    Returns
    -------
    coef : ndarray of shape (n_features,) or (n_features, n_targets)
        Coefficients of the OMP solution. If `return_path=True`, this contains
        the whole coefficient path. In this case its shape is
        (n_features, n_features) or (n_features, n_targets, n_features) and
        iterating over the last axis yields coefficients in increasing order
        of active features.

    n_iters : array-like or int
        Number of active features across every target. Returned only if
        `return_n_iter` is set to True.

    See Also
    --------
    OrthogonalMatchingPursuit
    orthogonal_mp
    lars_path
    sklearn.decomposition.sparse_encode

    Notes
    -----
    Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    r   r\   r   TNr_   zSGram OMP needs the precomputed norms in order to evaluate the error sum of squares.r   r`   ra   rb   r   F)rT   rU   r;   )r   r#   asarrayrg   r,   newaxisrM   rN   r"   rj   rO   rk   rn   r   ro   rY   rp   r)   rq   rr   )rQ   rR   r8   r9   rf   rT   rU   r;   r[   rt   ru   rv   rw   rH   rx   rD   ry   r@   rz   rI   rI   rJ   rm     sj   V

&
(

rm   c                   @   s.   e Zd ZdZddddddddZd	d
 ZdS )OrthogonalMatchingPursuita  Orthogonal Matching Pursuit model (OMP).

    Read more in the :ref:`User Guide <omp>`.

    Parameters
    ----------
    n_nonzero_coefs : int, default=None
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol : float, default=None
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    normalize : bool, default=True
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

        .. deprecated:: 1.0
            ``normalize`` was deprecated in version 1.0. It will default
            to False in 1.2 and be removed in 1.4.

    precompute : 'auto' or bool, default='auto'
        Whether to use a precomputed Gram and Xy matrix to speed up
        calculations. Improves performance when :term:`n_targets` or
        :term:`n_samples` is very large. Note that if you already have such
        matrices, you can pass them directly to the fit method.

    Attributes
    ----------
    coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
        Parameter vector (w in the formula).

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function.

    n_iter_ : int or array-like
        Number of active features across every target.

    n_nonzero_coefs_ : int
        The number of non-zero coefficients in the solution. If
        `n_nonzero_coefs` is None and `tol` is None this value is either set
        to 10% of `n_features` or 1, whichever is greater.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    orthogonal_mp : Solves n_targets Orthogonal Matching Pursuit problems.
    orthogonal_mp_gram :  Solves n_targets Orthogonal Matching Pursuit
        problems using only the Gram matrix X.T * X and the product X.T * y.
    lars_path : Compute Least Angle Regression or Lasso path using LARS algorithm.
    Lars : Least Angle Regression model a.k.a. LAR.
    LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
    sklearn.decomposition.sparse_encode : Generic sparse coding.
        Each column of the result is the solution to a Lasso problem.
    OrthogonalMatchingPursuitCV : Cross-validated
        Orthogonal Matching Pursuit model (OMP).

    Notes
    -----
    Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    Examples
    --------
    >>> from sklearn.linear_model import OrthogonalMatchingPursuit
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(noise=4, random_state=0)
    >>> reg = OrthogonalMatchingPursuit(normalize=False).fit(X, y)
    >>> reg.score(X, y)
    0.9991...
    >>> reg.predict(X[:1,])
    array([-78.3854...])
    NT
deprecatedrc   r8   r9   fit_intercept	normalizerZ   c                C   s"   || _ || _|| _|| _|| _d S Nr   )selfr8   r9   r   r   rZ   rI   rI   rJ   __init__  s
   	
z"OrthogonalMatchingPursuit.__init__c              
   C   s0  t | jd| jjd}| j||ddd\}}|jd }t||d| j|| jdd\}}}}}}}	|j	dkr<|ddt
jf }| jdu rQ| jdu rQttd| d| _n| j| _|du rjt||| j| jdddd	\}
| _n!| jdurxt
j|d
 ddnd}t||	| j| j|dddd\}
| _|
j| _| ||| | S )a  Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to X's dtype if necessary.

        Returns
        -------
        self : object
            Returns an instance of self.
        Tdefaultestimator_name)multi_output	y_numericr   Nr"   r_   F)r8   r9   rZ   r:   r[   r
   r   rd   )rR   r8   r9   rf   rT   rU   r[   )r	   r   	__class____name___validate_datar,   r   rZ   r   rg   r#   r}   r8   r9   ri   rj   n_nonzero_coefs_r{   n_iter_rl   rm   r)   coef__set_intercept)r   r6   r7   
_normalize
n_featuresX_offsety_offsetX_scalerQ   rR   r   norms_sqrI   rI   rJ   fit  sJ   

 

zOrthogonalMatchingPursuit.fitr   
__module____qualname____doc__r   r   rI   rI   rI   rJ   r~   O  s    gr~   d   c              	   C   s&  |r|   } |  }|  }|  }|r<| jdd}| |8 } ||8 }|jdd}	t|dd}||	8 }t|dd}||	8 }|r]ttj| d dd}
t|
}| dd|f  |
|   < t| ||ddddd}|jd	krv|ddtj	f }|r||  |
| ddtj	f   < t
|j|j| S )
a  Compute the residues on left-out data for a full LARS path.

    Parameters
    ----------
    X_train : ndarray of shape (n_samples, n_features)
        The data to fit the LARS on.

    y_train : ndarray of shape (n_samples)
        The target variable to fit LARS on.

    X_test : ndarray of shape (n_samples, n_features)
        The data to compute the residues on.

    y_test : ndarray of shape (n_samples)
        The target variable to compute the residues on.

    copy : bool, default=True
        Whether X_train, X_test, y_train and y_test should be copied.  If
        False, they may be overwritten.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    normalize : bool, default=True
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

        .. deprecated:: 1.0
            ``normalize`` was deprecated in version 1.0. It will default
            to False in 1.2 and be removed in 1.4.

    max_iter : int, default=100
        Maximum numbers of iterations to perform, therefore maximum features
        to include. 100 by default.

    Returns
    -------
    residues : ndarray of shape (n_samples, max_features)
        Residues of the prediction on the test data.
    r   rd   Fr   r
   NT)r8   r9   rZ   r:   r;   r   )r"   meanr   r#   r   rl   flatnonzeror{   rg   r}   r(   r)   )X_trainy_trainX_testy_testr"   r   r   max_iterX_meany_meannormsnonzerosrD   rI   rI   rJ   _omp_path_residues  s@   9

	"r   c                   @   s2   e Zd ZdZddddddddddZd	d
 ZdS )OrthogonalMatchingPursuitCVa  Cross-validated Orthogonal Matching Pursuit model (OMP).

    See glossary entry for :term:`cross-validation estimator`.

    Read more in the :ref:`User Guide <omp>`.

    Parameters
    ----------
    copy : bool, default=True
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    normalize : bool, default=True
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

        .. deprecated:: 1.0
            ``normalize`` was deprecated in version 1.0. It will default
            to False in 1.2 and be removed in 1.4.

    max_iter : int, default=None
        Maximum numbers of iterations to perform, therefore maximum features
        to include. 10% of ``n_features`` but at least 5 if available.

    cv : int, cross-validation generator or iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross-validation,
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    n_jobs : int, default=None
        Number of CPUs to use during the cross validation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : bool or int, default=False
        Sets the verbosity amount.

    Attributes
    ----------
    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function.

    coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
        Parameter vector (w in the problem formulation).

    n_nonzero_coefs_ : int
        Estimated number of non-zero coefficients giving the best mean squared
        error over the cross-validation folds.

    n_iter_ : int or array-like
        Number of active features across every target for the model refit with
        the best hyperparameters got by cross-validating across all folds.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    orthogonal_mp : Solves n_targets Orthogonal Matching Pursuit problems.
    orthogonal_mp_gram : Solves n_targets Orthogonal Matching Pursuit
        problems using only the Gram matrix X.T * X and the product X.T * y.
    lars_path : Compute Least Angle Regression or Lasso path using LARS algorithm.
    Lars : Least Angle Regression model a.k.a. LAR.
    LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
    OrthogonalMatchingPursuit : Orthogonal Matching Pursuit model (OMP).
    LarsCV : Cross-validated Least Angle Regression model.
    LassoLarsCV : Cross-validated Lasso model fit with Least Angle Regression.
    sklearn.decomposition.sparse_encode : Generic sparse coding.
        Each column of the result is the solution to a Lasso problem.

    Notes
    -----
    In `fit`, once the optimal number of non-zero coefficients is found through
    cross-validation, the model is fit again using the entire training set.

    Examples
    --------
    >>> from sklearn.linear_model import OrthogonalMatchingPursuitCV
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_features=100, n_informative=10,
    ...                        noise=4, random_state=0)
    >>> reg = OrthogonalMatchingPursuitCV(cv=5, normalize=False).fit(X, y)
    >>> reg.score(X, y)
    0.9991...
    >>> reg.n_nonzero_coefs_
    10
    >>> reg.predict(X[:1,])
    array([-78.3854...])
    Tr   NFr"   r   r   r   cvn_jobsverbosec                C   s.   || _ || _|| _|| _|| _|| _|| _d S r   r   )r   r"   r   r   r   r   r   r   rI   rI   rJ   r     s   
z$OrthogonalMatchingPursuitCV.__init__c                    s$  t jdjjdj ddd\ t ddd tjdd}js8t	t
td jd	  d
 jd	 njtjjd fdd| D }t	dd |D tfdd|D }t|jddd	 }|_t|jd}|  |j_|j_|j_S )a~  Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,)
            Target values. Will be cast to X's dtype if necessary.

        Returns
        -------
        self : object
            Returns an instance of self.
        Tr   r
   )r   ensure_min_featuresF)r"   force_all_finite)
classifierr_   r      )r   r   c              
   3   sB    | ]\}}t t | |  | | jjV  qd S r   )r   r   r"   r   ).0traintest)r6   r   r   r   r7   rI   rJ   	<genexpr>  s    
z2OrthogonalMatchingPursuitCV.fit.<locals>.<genexpr>c                 s   s    | ]}|j d  V  qdS )r   N)r,   r   foldrI   rI   rJ   r     s    c                    s$   g | ]}|d   d j ddqS )Nr
   r   rd   )r   r   )min_early_stoprI   rJ   
<listcomp>  s   $ z3OrthogonalMatchingPursuitCV.fit.<locals>.<listcomp>r   rd   )r8   r   r   )r	   r   r   r   r   r   r   r   r   minri   rj   r,   r   r   r   splitr#   arrayargminr   r   r~   r   r   r   
intercept_r   )r   r6   r7   r   cv_paths	mse_foldsbest_n_nonzero_coefsomprI   )r6   r   r   r   r   r7   rJ   r     s:   & zOrthogonalMatchingPursuitCV.fitr   rI   rI   rI   rJ   r   c  s    |r   )NTF)NNTTF)TTTr   )"r   r0   mathr   numpyr#   scipyr   scipy.linalg.lapackr   joblibr   _baser   r   r	   baser   r   utilsr   r   utils.fixesr   model_selectionr   r2   rK   rY   r{   rm   r~   r   r   rI   rI   rI   rJ   <module>   s^    
x
  "  ;
_