o
    tBhb6                     @   s   d Z ddlZddlZddlmZ ddlmZ ddlmZ ddl	m
Z
mZmZ ddlmZmZ dd	lmZ dd
lmZ ddlmZ ddlmZ ddlmZ G dd deee
ZdS )zIsomap for manifold learning    N)issparse)shortest_path)connected_components   )BaseEstimatorTransformerMixin _ClassNamePrefixFeaturesOutMixin)NearestNeighborskneighbors_graph)radius_neighbors_graph)check_is_fitted)	KernelPCA)KernelCenterer)_fix_connected_componentsc                   @   s`   e Zd ZdZdddddddddddddd	d
Zdd Zdd ZdddZdddZdd Z	dS )Isomapa  Isomap Embedding.

    Non-linear dimensionality reduction through Isometric Mapping

    Read more in the :ref:`User Guide <isomap>`.

    Parameters
    ----------
    n_neighbors : int or None, default=5
        Number of neighbors to consider for each point. If `n_neighbors` is an int,
        then `radius` must be `None`.

    radius : float or None, default=None
        Limiting distance of neighbors to return. If `radius` is a float,
        then `n_neighbors` must be set to `None`.

        .. versionadded:: 1.1

    n_components : int, default=2
        Number of coordinates for the manifold.

    eigen_solver : {'auto', 'arpack', 'dense'}, default='auto'
        'auto' : Attempt to choose the most efficient solver
        for the given problem.

        'arpack' : Use Arnoldi decomposition to find the eigenvalues
        and eigenvectors.

        'dense' : Use a direct solver (i.e. LAPACK)
        for the eigenvalue decomposition.

    tol : float, default=0
        Convergence tolerance passed to arpack or lobpcg.
        not used if eigen_solver == 'dense'.

    max_iter : int, default=None
        Maximum number of iterations for the arpack solver.
        not used if eigen_solver == 'dense'.

    path_method : {'auto', 'FW', 'D'}, default='auto'
        Method to use in finding shortest path.

        'auto' : attempt to choose the best algorithm automatically.

        'FW' : Floyd-Warshall algorithm.

        'D' : Dijkstra's algorithm.

    neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'},                           default='auto'
        Algorithm to use for nearest neighbors search,
        passed to neighbors.NearestNeighbors instance.

    n_jobs : int or None, default=None
        The number of parallel jobs to run.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    metric : str, or callable, default="minkowski"
        The metric to use when calculating distance between instances in a
        feature array. If metric is a string or callable, it must be one of
        the options allowed by :func:`sklearn.metrics.pairwise_distances` for
        its metric parameter.
        If metric is "precomputed", X is assumed to be a distance matrix and
        must be square. X may be a :term:`Glossary <sparse graph>`.

        .. versionadded:: 0.22

    p : int, default=2
        Parameter for the Minkowski metric from
        sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

        .. versionadded:: 0.22

    metric_params : dict, default=None
        Additional keyword arguments for the metric function.

        .. versionadded:: 0.22

    Attributes
    ----------
    embedding_ : array-like, shape (n_samples, n_components)
        Stores the embedding vectors.

    kernel_pca_ : object
        :class:`~sklearn.decomposition.KernelPCA` object used to implement the
        embedding.

    nbrs_ : sklearn.neighbors.NearestNeighbors instance
        Stores nearest neighbors instance, including BallTree or KDtree
        if applicable.

    dist_matrix_ : array-like, shape (n_samples, n_samples)
        Stores the geodesic distance matrix of training data.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    sklearn.decomposition.PCA : Principal component analysis that is a linear
        dimensionality reduction method.
    sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using
        kernels and PCA.
    MDS : Manifold learning using multidimensional scaling.
    TSNE : T-distributed Stochastic Neighbor Embedding.
    LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding.
    SpectralEmbedding : Spectral embedding for non-linear dimensionality.

    References
    ----------

    .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric
           framework for nonlinear dimensionality reduction. Science 290 (5500)

    Examples
    --------
    >>> from sklearn.datasets import load_digits
    >>> from sklearn.manifold import Isomap
    >>> X, _ = load_digits(return_X_y=True)
    >>> X.shape
    (1797, 64)
    >>> embedding = Isomap(n_components=2)
    >>> X_transformed = embedding.fit_transform(X[:100])
    >>> X_transformed.shape
    (100, 2)
       Nr   autor   	minkowskin_neighborsradiusn_componentseigen_solvertolmax_iterpath_methodneighbors_algorithmn_jobsmetricpmetric_paramsc                C   sL   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _d S Nr   )selfr   r   r   r   r   r   r   r   r   r   r   r     r#   o/var/www/html/riverr-enterprise-integrations-main/venv/lib/python3.10/site-packages/sklearn/manifold/_isomap.py__init__   s   
zIsomap.__init__c              	   C   s  | j d ur| jd urtd| j dt| j | j| j| j| j| j| jd| _	| j	
| | j	j| _t| j	dr<| j	j| _t| jd| j| j| j| jd| _| j d urct| j	| j | j| j| jd| jd}nt| j	| j| j| j| jd| jd	}t|\}}|d
kr| jdkrt|rtd| dtjd| ddd td| j	j|||d| j	jd| j	j}t|| j dd| _!| j!d }|d9 }| j"|| _#| j#j$d
 | _%d S )Nz<Both n_neighbors and radius are provided. Use Isomap(radius=z=, n_neighbors=None) if intended to use radius-based neighbors)r   r   	algorithmr   r   r    r   feature_names_in_precomputed)r   kernelr   r   r   r   distance)r   r   r    moder   )r   r   r   r    r+   r      z=The number of connected components of the neighbors graph is z > 1. The graph cannot be completed with metric='precomputed', and Isomap cannot befitted. Increase the number of neighbors to avoid this issue, or precompute the full distance matrix instead of passing a sparse neighbors graph.zm > 1. Completing the graph to fit Isomap might be slow. Increase the number of neighbors to avoid this issue.r   )
stacklevel)Xgraphn_connected_componentscomponent_labelsr+   r   F)methoddirected      r#   )&r   r   
ValueErrorr	   r   r   r   r    r   nbrs_fitn_features_in_hasattrr'   r   r   r   r   r   kernel_pca_r
   r   r   r   RuntimeErrorwarningswarnr   _fit_Xeffective_metric_effective_metric_params_r   r   dist_matrix_fit_transform
embedding_shape_n_features_out)r"   r.   nbgr0   labelsGr#   r#   r$   _fit_transform   s   	


	
	

zIsomap._fit_transformc                 C   sN   d| j d  }t |}| jj}tt|d t|d  |jd  S )a(  Compute the reconstruction error for the embedding.

        Returns
        -------
        reconstruction_error : float
            Reconstruction error.

        Notes
        -----
        The cost function of an isomap embedding is

        ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples``

        Where D is the matrix of distances for the input data X,
        D_fit is the matrix of distances for the output embedding X_fit,
        and K is the isomap kernel:

        ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)``
        r4   r   r   )	rA   r   rB   r:   eigenvalues_npsqrtsumrD   )r"   rH   G_centerevalsr#   r#   r$   reconstruction_error  s   ,zIsomap.reconstruction_errorc                 C   s   |  | | S )a  Compute the embedding vectors for data X.

        Parameters
        ----------
        X : {array-like, sparse graph, BallTree, KDTree, NearestNeighbors}
            Sample data, shape = (n_samples, n_features), in the form of a
            numpy array, sparse graph, precomputed tree, or NearestNeighbors
            object.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        self : object
            Returns a fitted instance of self.
        )rI   r"   r.   yr#   r#   r$   r7   6  s   
z
Isomap.fitc                 C   s   |  | | jS )a  Fit the model from data in X and transform X.

        Parameters
        ----------
        X : {array-like, sparse graph, BallTree, KDTree}
            Training vector, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
            X transformed in the new space.
        )rI   rC   rQ   r#   r#   r$   rB   K  s   
zIsomap.fit_transformc                 C   s   t |  | jdur| jj|dd\}}n
| jj|dd\}}| jj}|jd }t||f}t	|D ]}t
| j||  || dddf  d||< q2|dC }|d9 }| j|S )a  Transform X.

        This is implemented by linking the points X into the graph of geodesic
        distances of the training data. First the `n_neighbors` nearest
        neighbors of X are found in the training data, and from these the
        shortest geodesic distances from each point in X to each point in
        the training data are computed in order to construct the kernel.
        The embedding of X is the projection of this kernel onto the
        embedding vectors of the training set.

        Parameters
        ----------
        X : array-like, shape (n_queries, n_features)
            If neighbors_algorithm='precomputed', X is assumed to be a
            distance matrix or a sparse graph of shape
            (n_queries, n_samples_fit).

        Returns
        -------
        X_new : array-like, shape (n_queries, n_components)
            X transformed in the new space.
        NT)return_distancer   r   r4   )r   r   r6   
kneighborsradius_neighborsn_samples_fit_rD   rK   zerosrangeminrA   r:   	transform)r"   r.   	distancesindicesn_samples_fit	n_queriesG_Xir#   r#   r$   rZ   _  s   

0zIsomap.transformr!   )
__name__
__module____qualname____doc__r%   rI   rP   r7   rB   rZ   r#   r#   r#   r$   r      s*     ^

r   )rd   r<   numpyrK   scipy.sparser   scipy.sparse.csgraphr   r   baser   r   r   	neighborsr	   r
   r   utils.validationr   decompositionr   preprocessingr   utils.graphr   r   r#   r#   r#   r$   <module>   s    