o
    tBh3@                     @   s   d Z ddlmZ ddlmZ ddlZddlmZ ddlmZ ddlm	Z	 ddl
Zdd	lmZmZ d
d Zdd ZeeedZdd Zdd Zdd Zdd Zd ddZd!ddZd!ddZdd ZdS )"zX
Multi-class / multi-label utility function
==========================================

    )Sequence)chainN)issparse)
dok_matrix)
lil_matrix   )check_array_assert_all_finitec                 C   s"   t | drtt| S t| S )N	__array__)hasattrnpuniqueasarraysety r   o/var/www/html/riverr-enterprise-integrations-main/venv/lib/python3.10/site-packages/sklearn/utils/multiclass.py_unique_multiclass   s   
r   c                 C   s   t t| dg ddjd S )Nr   csrcsccoo)
input_nameaccept_sparser   )r   aranger   shaper   r   r   r   _unique_indicator   s   r   )binary
multiclassmultilabel-indicatorc                     s   | st dtdd | D }|ddhkrdh}t|dkr$t d| | }|dkr=ttd	d | D dkr=t d
t|d  sMt dt|  tt fdd| D }ttdd |D dkrlt dt	
t|S )aw  Extract an ordered array of unique labels.

    We don't allow:
        - mix of multilabel and multiclass (single label) targets
        - mix of label indicator matrix and anything else,
          because there are no explicit labels)
        - mix of label indicator matrices of different sizes
        - mix of string and integer labels

    At the moment, we also don't allow "multiclass-multioutput" input type.

    Parameters
    ----------
    *ys : array-likes

    Returns
    -------
    out : ndarray of shape (n_unique_labels,)
        An ordered array of unique labels.

    Examples
    --------
    >>> from sklearn.utils.multiclass import unique_labels
    >>> unique_labels([3, 5, 5, 5, 7, 7])
    array([3, 5, 7])
    >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4])
    array([1, 2, 3, 4])
    >>> unique_labels([1, 2, 10], [5, 11])
    array([ 1,  2,  5, 10, 11])
    zNo argument has been passed.c                 s   s    | ]}t |V  qd S N)type_of_target).0xr   r   r   	<genexpr>M       z unique_labels.<locals>.<genexpr>r   r   r   z'Mix type of y not allowed, got types %sr    c                 s   s&    | ]}t |g d djd V  qdS )r   )r   r   N)r   r   r#   r   r   r   r   r%   Z   s    
zCMulti-label binary indicator input with different numbers of labelsNzUnknown label type: %sc                 3   s    | ]} |V  qd S r!   r   r'   _unique_labelsr   r   r%   i   r&   c                 s   s    | ]}t |tV  qd S r!   )
isinstancestr)r#   labelr   r   r   r%   l   s    z,Mix of label input types (string and number))
ValueErrorr   lenpop_FN_UNIQUE_LABELSgetreprr   from_iterabler   arraysorted)ysys_types
label_type	ys_labelsr   r(   r   unique_labels*   s4   r:   c                 C   s    | j jdkot| t| kS )Nf)dtypekindr   allastypeintr   r   r   r   _is_integral_floatr   s    rA   c              	   C   s&  t | ds
t| tr>t ( tdtj zt| } W n tjy.   tj	| t
d} Y nw W d   n1 s9w   Y  t | drO| jdkrO| jd dksQdS t| r~t| ttfr`|  } t| jd	kp}t| jjdko}| jjd
v p}tt| jS t| }t|dk o| jjd
v pt|S )a~  Check if ``y`` is in a multilabel format.

    Parameters
    ----------
    y : ndarray of shape (n_samples,)
        Target values.

    Returns
    -------
    out : bool
        Return ``True``, if ``y`` is in a multilabel format, else ```False``.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils.multiclass import is_multilabel
    >>> is_multilabel([0, 1, 0, 1])
    False
    >>> is_multilabel([[1], [0, 2], []])
    False
    >>> is_multilabel(np.array([[1, 0], [0, 0]]))
    True
    >>> is_multilabel(np.array([[1], [0], [0]]))
    False
    >>> is_multilabel(np.array([[1, 0, 0]]))
    True
    r
   errorr<   Nr      r   Fr   biu   )r   r*   r   warningscatch_warningssimplefilterr   VisibleDeprecationWarningr   r4   objectndimr   r   r   r   tocsrr.   datar   sizer<   r=   rA   )r   labelsr   r   r   is_multilabelv   s0   
"	
	rQ   c                 C   s$   t | dd}|dvrtd| dS )aA  Ensure that target y is of a non-regression type.

    Only the following target types (as defined in type_of_target) are allowed:
        'binary', 'multiclass', 'multiclass-multioutput',
        'multilabel-indicator', 'multilabel-sequences'

    Parameters
    ----------
    y : array-like
        Target values.
    r   r   )r   r   zmulticlass-multioutputr    zmultilabel-sequenceszUnknown label type: %rN)r"   r-   )r   y_typer   r   r   check_classification_targets   s   rT    c              	   C   s  t | tpt| pt| dot | t }|std|  | jjdv }|r(tdt| r.dS t	
 ( t	dtj zt| } W n tjyR   tj| td} Y nw W d   n1 s]w   Y  zt| d	 ds|t | d	 tr|t | d	 ts|td
W n	 ty   Y nw | jdks| jtkrt| rt | jd	 tsdS | jdkr| jd d	krdS | jdkr| jd dkrd}nd}| jjdkrt| | tkrt| |d d| S tt| dks| jdkrt| d	 dkrd| S dS )a	  Determine the type of data indicated by the target.

    Note that this type is the most specific type that can be inferred.
    For example:

        * ``binary`` is more specific but compatible with ``multiclass``.
        * ``multiclass`` of integers is more specific but compatible with
          ``continuous``.
        * ``multilabel-indicator`` is more specific but compatible with
          ``multiclass-multioutput``.

    Parameters
    ----------
    y : array-like

    input_name : str, default=""
        The data name used to construct the error message.

        .. versionadded:: 1.1.0

    Returns
    -------
    target_type : str
        One of:

        * 'continuous': `y` is an array-like of floats that are not all
          integers, and is 1d or a column vector.
        * 'continuous-multioutput': `y` is a 2d array of floats that are
          not all integers, and both dimensions are of size > 1.
        * 'binary': `y` contains <= 2 discrete values and is 1d or a column
          vector.
        * 'multiclass': `y` contains more than two discrete values, is not a
          sequence of sequences, and is 1d or a column vector.
        * 'multiclass-multioutput': `y` is a 2d array that contains more
          than two discrete values, is not a sequence of sequences, and both
          dimensions are of size > 1.
        * 'multilabel-indicator': `y` is a label indicator matrix, an array
          of two dimensions with at least two columns, and at most 2 unique
          values.
        * 'unknown': `y` is array-like but none of the above, such as a 3d
          array, sequence of sequences, or an array of non-sequence objects.

    Examples
    --------
    >>> from sklearn.utils.multiclass import type_of_target
    >>> import numpy as np
    >>> type_of_target([0.1, 0.6])
    'continuous'
    >>> type_of_target([1, -1, -1, 1])
    'binary'
    >>> type_of_target(['a', 'b', 'a'])
    'binary'
    >>> type_of_target([1.0, 2.0])
    'binary'
    >>> type_of_target([1, 0, 2])
    'multiclass'
    >>> type_of_target([1.0, 0.0, 3.0])
    'multiclass'
    >>> type_of_target(['a', 'b', 'c'])
    'multiclass'
    >>> type_of_target(np.array([[1, 2], [3, 1]]))
    'multiclass-multioutput'
    >>> type_of_target([[1, 2]])
    'multilabel-indicator'
    >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]]))
    'continuous-multioutput'
    >>> type_of_target(np.array([[0, 1], [1, 1]]))
    'multilabel-indicator'
    r
   z:Expected array-like (array or non-string sequence), got %r)SparseSeriesSparseArrayz1y cannot be class 'SparseSeries' or 'SparseArray'r    rB   rC   Nr   zYou appear to be using a legacy multi-label data representation. Sequence of sequences are no longer supported; use a binary array or sparse matrix instead - the MultiLabelBinarizer transformer can convert to this format.rD   unknownr   z-multioutputrU   r;   rR   
continuousr   r   )r*   r   r   r   r+   r-   	__class____name__rQ   rG   rH   rI   r   rJ   r   rK   
IndexErrorrL   r<   r.   flatr   r=   anyr?   r@   r	   r   )r   r   validsparse_pandassuffixr   r   r   r"      sb   G


, ,r"   c                 C   sr   t | dddu r|du rtd|dur7t | dddur0t| jt|s.td|| jf dS t|| _dS dS )a"  Private helper function for factorizing common classes param logic.

    Estimators that implement the ``partial_fit`` API need to be provided with
    the list of possible classes at the first call to partial_fit.

    Subsequent calls to partial_fit should check that ``classes`` is still
    consistent with a previous value of ``clf.classes_`` when provided.

    This function returns True if it detects that this was the first call to
    ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also
    set on ``clf``.

    classes_Nz8classes must be passed on the first call to partial_fit.zD`classes=%r` is not the same as on last call to partial_fit, was: %rTF)getattrr-   r   array_equalrb   r:   )clfclassesr   r   r   _check_partial_fit_first_callU  s   
rg   c                 C   s  g }g }g }| j \}}|durt|}t| r|  } t| j}t|D ]}| j| j| | j|d   }	|durJ||	 }
t	|t	|
 }nd}
| j d ||  }tj
| j| j| | j|d   dd\}}tj||
d}d|v r||dk  |7  < d|vr|| | j d k rt|dd}t|d|}|| ||j d  |||	   q&n3t|D ].}tj
| dd|f dd\}}|| ||j d  tj||d}|||	   q|||fS )a{  Compute class priors from multioutput-multiclass target data.

    Parameters
    ----------
    y : {array-like, sparse matrix} of size (n_samples, n_outputs)
        The labels for each example.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    classes : list of size n_outputs of ndarray of size (n_classes,)
        List of classes for each column.

    n_classes : list of int of size n_outputs
        Number of classes in each column.

    class_prior : list of size n_outputs of ndarray of size (n_classes,)
        Class distribution of each column.

    Nr   r   T)return_inverse)weights)r   r   r   r   tocscdiffindptrrangeindicessumr   rN   bincountinsertappend)r   sample_weightrf   	n_classesclass_prior	n_samples	n_outputsy_nnzkcol_nonzeronz_samp_weightzeros_samp_weight_sum	classes_ky_kclass_prior_kr   r   r   class_distributionx  sH   





r   c           
      C   s  | j d }t||f}t||f}d}t|D ]X}t|d |D ]N}|dd|f  |dd|f 8  < |dd|f  |dd|f 7  < || dd|f dk|f  d7  < || dd|f dk|f  d7  < |d7 }q"q|dt|d   }	||	 S )ay  Compute a continuous, tie-breaking OvR decision function from OvO.

    It is important to include a continuous value, not only votes,
    to make computing AUC or calibration meaningful.

    Parameters
    ----------
    predictions : array-like of shape (n_samples, n_classifiers)
        Predicted classes for each binary classifier.

    confidences : array-like of shape (n_samples, n_classifiers)
        Decision functions or predicted probabilities for positive class
        for each binary classifier.

    n_classes : int
        Number of classes. n_classifiers must be
        ``n_classes * (n_classes - 1 ) / 2``.
    r   r   NrF   )r   r   zerosrm   abs)
predictionsconfidencesrt   rv   votessum_of_confidencesry   ijtransformed_confidencesr   r   r   _ovr_decision_function  s    
$$$$
r   )rU   r!   )__doc__collections.abcr   	itertoolsr   rG   scipy.sparser   r   r   numpyr   
validationr   r	   r   r   r0   r:   rA   rQ   rT   r"   rg   r   r   r   r   r   r   <module>   s0   H>
 

#K