o
    tBhg,                     @   s   d dl mZ d dlmZ d dlmZ d dlZddlm	Z	 dddd	d
Z
d!ddZG dd deZdd ZG dd deZdd Zdd ZddddZd"ddZG dd deZdd  ZdS )#    )suppress)Counter)
NamedTupleN   is_scalar_nanFreturn_inversereturn_countsc                C   s&   | j tkrt| ||dS t| ||dS )a  Helper function to find unique values with support for python objects.

    Uses pure python method for object dtype, and numpy method for
    all other dtypes.

    Parameters
    ----------
    values : ndarray
        Values to check for unknowns.

    return_inverse : bool, default=False
        If True, also return the indices of the unique values.

    return_counts : bool, default=False
        If True, also return the number of times each unique item appears in
        values.

    Returns
    -------
    unique : ndarray
        The sorted unique values.

    unique_inverse : ndarray
        The indices to reconstruct the original array from the unique array.
        Only provided if `return_inverse` is True.

    unique_counts : ndarray
        The number of times each of the unique values comes up in the original
        array. Only provided if `return_counts` is True.
    r   )dtypeobject_unique_python
_unique_np)valuesr	   r
    r   l/var/www/html/riverr-enterprise-integrations-main/venv/lib/python3.10/site-packages/sklearn/utils/_encode.py_unique	   s   
r   c                 C   s   t j| ||d}d\}}|r|^ }}|r|^ }}|s|r"|d }|jrWt|d rWt |t j}|d|d  }|rB||||k< |rWt ||d ||< |d|d  }|f}|ra||f7 }|rh||f7 }t|dkrr|d S |S )zHelper function to find unique values for numpy arrays that correctly
    accounts for nans. See `_unique` documentation for details.r   )NNr   Nr   )npuniquesizer   searchsortednansumlen)r   r	   r
   uniquesinversecountsnan_idxretr   r   r   r   2   s0   



r   c                   @   s*   e Zd ZU dZeed< eed< dd ZdS )MissingValuesz'Data class for missing data informationr   nonec                 C   s*   g }| j r
|d | jr|tj |S )z3Convert tuple to a list where None is always first.N)r!   appendr   r   )selfoutputr   r   r   to_lista   s   
zMissingValues.to_listN)__name__
__module____qualname____doc__bool__annotations__r%   r   r   r   r   r    [   s
   
 r    c                 C   sn   dd | D }|s| t dddfS d|v r)t|dkr"t ddd}nt ddd}nt ddd}| | }||fS )a.  Extract missing values from `values`.

    Parameters
    ----------
    values: set
        Set of values to extract missing from.

    Returns
    -------
    output: set
        Set with missing values extracted.

    missing_values: MissingValues
        Object with missing value information.
    c                 S   s    h | ]}|d u st |r|qS Nr   .0valuer   r   r   	<setcomp>{   s    z#_extract_missing.<locals>.<setcomp>F)r   r!   Nr   T)r    r   )r   missing_values_setoutput_missing_valuesr$   r   r   r   _extract_missingk   s   r3   c                       s(   e Zd ZdZ fddZdd Z  ZS )_nandictz!Dictionary with support for nans.c                    s6   t  | | D ]\}}t|r|| _ d S q
d S r,   )super__init__itemsr   	nan_value)r#   mappingkeyr/   	__class__r   r   r6      s   z_nandict.__init__c                 C       t | drt|r| jS t|)Nr8   )hasattrr   r8   KeyErrorr#   r:   r   r   r   __missing__      z_nandict.__missing__)r&   r'   r(   r)   r6   rA   __classcell__r   r   r;   r   r4      s    r4   c                    s.   t dd t|D  t fdd| D S )z,Map values based on its position in uniques.c                 S   s   i | ]\}}||qS r   r   )r.   ivalr   r   r   
<dictcomp>   s    z#_map_to_integer.<locals>.<dictcomp>c                    s   g | ]} | qS r   r   r.   vtabler   r   
<listcomp>       z#_map_to_integer.<locals>.<listcomp>)r4   	enumerater   array)r   r   r   rI   r   _map_to_integer   s   rO   c                C   s   zt | }t|\}}t|}||  tj|| jd}W n ty=   tdd t dd | D D }td| w |f}|rK|t	| |f7 }|rU|t
| |f7 }t|dkr_|d S |S )Nr   c                 s   s    | ]}|j V  qd S r,   )r(   )r.   tr   r   r   	<genexpr>   s    z!_unique_python.<locals>.<genexpr>c                 s   s    | ]}t |V  qd S r,   )typerG   r   r   r   rR      s    zEEncoders require their input to be uniformly strings or numbers. Got r   r   )setr3   sortedextendr%   r   rN   r   	TypeErrorrO   _get_countsr   )r   r	   r
   uniques_setmissing_valuesr   typesr   r   r   r   r      s(    r   T)check_unknownc             
   C   st   | j jdv r"zt| |W S  ty! } z	tdt| d}~ww |r4t| |}|r4tdt| t|| S )a  Helper function to encode values into [0, n_uniques - 1].

    Uses pure python method for object dtype, and numpy method for
    all other dtypes.
    The numpy method has the limitation that the `uniques` need to
    be sorted. Importantly, this is not checked but assumed to already be
    the case. The calling method needs to ensure this for all non-object
    values.

    Parameters
    ----------
    values : ndarray
        Values to encode.
    uniques : ndarray
        The unique values in `values`. If the dtype is not object, then
        `uniques` needs to be sorted.
    check_unknown : bool, default=True
        If True, check for values in `values` that are not in `unique`
        and raise an error. This is ignored for object dtype, and treated as
        True in this case. This parameter is useful for
        _BaseEncoder._transform() to avoid calling _check_unknown()
        twice.

    Returns
    -------
    encoded : ndarray
        Encoded values
    OUSz%y contains previously unseen labels: N)	r   kindrO   r?   
ValueErrorstr_check_unknownr   r   )r   r   r\   ediffr   r   r   _encode   s   
rd   c                    sp  d}| j jdv rgt| }t|\}}t|t\| }|jo&j }|jo-j }fdd |rS|s=|s=|rJt fdd| D }n	tjt	| t
d}t|}|r^|d |rf|tj nIt| }	tj|	|dd	}|r|jrt| |}n	tjt	| t
d}t| rt|}
|
 r|jr|rt| }d
||< ||
  }t|}|r||fS |S )a  
    Helper function to check for unknowns in values to be encoded.

    Uses pure python method for object dtype, and numpy method for
    all other dtypes.

    Parameters
    ----------
    values : array
        Values to check for unknowns.
    known_values : array
        Known values. Must be unique.
    return_mask : bool, default=False
        If True, return a mask of the same shape as `values` indicating
        the valid values.

    Returns
    -------
    diff : list
        The unique values present in `values` and not in `know_values`.
    valid_mask : boolean array
        Additionally returned if ``return_mask=True``.

    Nr]   c                    s$   | v p j o
| d u p jot| S r,   )r!   r   r   )r/   )missing_in_uniquesrY   r   r   is_valid  s   z _check_unknown.<locals>.is_validc                    s   g | ]} |qS r   r   r-   )rf   r   r   rK     rL   z"_check_unknown.<locals>.<listcomp>rP   Tassume_uniquer   )r   r^   rT   r3   r   r!   r   rN   onesr   r*   listr"   r   	setdiff1dr   in1disnanany)r   known_valuesreturn_mask
valid_mask
values_setmissing_in_valuesrc   nan_in_diffnone_in_diffunique_valuesdiff_is_nanis_nanr   )rf   re   rY   r   ra      sJ   	





ra   c                       s0   e Zd ZdZ fddZdd Zdd Z  ZS )_NaNCounterz$Counter with support for nan values.c                    s   t  | | d S r,   )r5   r6   _generate_items)r#   r7   r;   r   r   r6   C  s   z_NaNCounter.__init__c                 c   s>    |D ]}t |s|V  qt| dsd| _|  jd7  _qdS )z>Generate items without nans. Stores the nan counts separately.	nan_countr   r   N)r   r>   r{   )r#   r7   itemr   r   r   rz   F  s   
z_NaNCounter._generate_itemsc                 C   r=   )Nr{   )r>   r   r{   r?   r@   r   r   r   rA   P  rB   z_NaNCounter.__missing__)r&   r'   r(   r)   r6   rz   rA   rC   r   r   r;   r   ry   @  s
    
ry   c           
   	   C   s   | j jdv r9t| }tjt|tjd}t|D ]\}}tt	 || ||< W d   n1 s1w   Y  q|S t
| dd\}}tj||dd}t|d r[t|d r[d|d< t||| }	tj|tjd}||	 ||< |S )zGet the count of each of the `uniques` in `values`.

    The counts will use the order passed in by `uniques`. For non-object dtypes,
    `uniques` is assumed to be sorted and `np.nan` is at the end.
    OUrP   NT)r
   rg   r   )r   r^   ry   r   zerosr   int64rM   r   r?   r   isinrm   r   
zeros_like)
r   r   counterr$   rD   r|   rv   r   uniques_in_valuesunique_valid_indicesr   r   r   rX   V  s"   
rX   )FF)F)
contextlibr   collectionsr   typingr   numpyr    r   r   r   r    r3   dictr4   rO   r   rd   ra   ry   rX   r   r   r   r   <module>   s     
))&
*U