o
    tBhj+                     @   sz   d dl ZddlmZmZ ddlmZmZmZ ddlm	Z	 G dd dZ
G d	d
 d
ZG dd deeZG dd deZdS )    N   )BaseEstimatorClassifierMixin   )_check_sample_weight_num_samplescheck_array)check_is_fittedc                   @   s    e Zd ZdZdd Zdd ZdS )ArraySlicingWrapper-
    Parameters
    ----------
    array
    c                 C   
   || _ d S Narrayselfr    r   m/var/www/html/riverr-enterprise-integrations-main/venv/lib/python3.10/site-packages/sklearn/utils/_mocking.py__init__      
zArraySlicingWrapper.__init__c                 C   s   t | j| S r   MockDataFramer   )r   aslicer   r   r   __getitem__      zArraySlicingWrapper.__getitem__N)__name__
__module____qualname____doc__r   r   r   r   r   r   r
      s    r
   c                   @   sD   e Zd ZdZdd Zdd ZdddZd	d
 Zdd ZdddZ	dS )r   r   c                 C   s*   || _ || _|j| _|j| _t|| _d S r   )r   valuesshapendimr
   ilocr   r   r   r   r      s
   zMockDataFrame.__init__c                 C   s
   t | jS r   )lenr   r   r   r   r   __len__'   r   zMockDataFrame.__len__Nc                 C   s   | j S r   r   )r   dtyper   r   r   	__array__*   s   zMockDataFrame.__array__c                 C   s   t | j|jkS r   r   r   otherr   r   r   __eq__0   s   zMockDataFrame.__eq__c                 C   s
   | |k S r   r   r(   r   r   r   __ne__3   r   zMockDataFrame.__ne__r   c                 C   s   t | jj||dS )N)axis)r   r   take)r   indicesr,   r   r   r   r-   6   s   zMockDataFrame.taker   )r   )
r   r   r   r   r   r%   r'   r*   r+   r-   r   r   r   r   r      s    
r   c                	   @   sj   e Zd ZdZdddddddddddZdd	d
ZdddZdd Zdd Zdd Z	dddZ
dd ZdS )CheckingClassifiera  Dummy classifier to test pipelining and meta-estimators.

    Checks some property of `X` and `y`in fit / predict.
    This allows testing whether pipelines / cross-validation or metaestimators
    changed the input.

    Can also be used to check if `fit_params` are passed correctly, and
    to force a certain score to be returned.

    Parameters
    ----------
    check_y, check_X : callable, default=None
        The callable used to validate `X` and `y`. These callable should return
        a bool where `False` will trigger an `AssertionError`.

    check_y_params, check_X_params : dict, default=None
        The optional parameters to pass to `check_X` and `check_y`.

    methods_to_check : "all" or list of str, default="all"
        The methods in which the checks should be applied. By default,
        all checks will be done on all methods (`fit`, `predict`,
        `predict_proba`, `decision_function` and `score`).

    foo_param : int, default=0
        A `foo` param. When `foo > 1`, the output of :meth:`score` will be 1
        otherwise it is 0.

    expected_sample_weight : bool, default=False
        Whether to check if a valid `sample_weight` was passed to `fit`.

    expected_fit_params : list of str, default=None
        A list of the expected parameters given when calling `fit`.

    Attributes
    ----------
    classes_ : int
        The classes seen during `fit`.

    n_features_in_ : int
        The number of features seen during `fit`.

    Examples
    --------
    >>> from sklearn.utils._mocking import CheckingClassifier

    This helper allow to assert to specificities regarding `X` or `y`. In this
    case we expect `check_X` or `check_y` to return a boolean.

    >>> from sklearn.datasets import load_iris
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = CheckingClassifier(check_X=lambda x: x.shape == (150, 4))
    >>> clf.fit(X, y)
    CheckingClassifier(...)

    We can also provide a check which might raise an error. In this case, we
    expect `check_X` to return `X` and `check_y` to return `y`.

    >>> from sklearn.utils import check_array
    >>> clf = CheckingClassifier(check_X=check_array)
    >>> clf.fit(X, y)
    CheckingClassifier(...)
    Nallr   check_ycheck_y_paramscheck_Xcheck_X_paramsmethods_to_check	foo_paramexpected_sample_weightexpected_fit_paramsc          	      C   s4   || _ || _|| _|| _|| _|| _|| _|| _d S r   r1   )	r   r2   r3   r4   r5   r6   r7   r8   r9   r   r   r   r   z   s   
zCheckingClassifier.__init__Tc                 C   s   |rt |  | jdur-| jdu ri n| j}| j|fi |}t|ttjfr+|s*J n|}|dur[| jdur[| jdu r=i n| j}| j|fi |}t|ttjfrY|sUJ ||fS |}||fS )a  Validate X and y and make extra check.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data set.
        y : array-like of shape (n_samples), default=None
            The corresponding target, by default None.
        should_be_fitted : bool, default=True
            Whether or not the classifier should be already fitted.
            By default True.

        Returns
        -------
        X, y
        N)	r	   r4   r5   
isinstanceboolnpbool_r2   r3   )r   Xyshould_be_fittedparams	checked_X	checked_yr   r   r   
_check_X_y   s    

zCheckingClassifier._check_X_yc              	   K   s   t |t |ks
J | jdksd| jv r| j||dd\}}t|d | _tt|ddd| _| j	rlt
| j	t
| }|rItdt| d	| D ]\}}t |t |krktd
| dt | dt | dqM| jr||du rwtdt|| | S )a   Fit classifier.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples, n_outputs) or (n_samples,),                 default=None
            Target relative to X for classification or regression;
            None for unsupervised learning.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of the estimator

        Returns
        -------
        self
        r0   fitF)r@   r   T)	ensure_2dallow_ndzExpected fit parameter(s) z
 not seen.zFit parameter z has length z; expected .Nz#Expected sample_weight to be passed)r   r6   rD   r<   r    n_features_in_uniquer   classes_r9   setAssertionErrorlistitemsr8   r   )r   r>   r?   sample_weight
fit_paramsmissingkeyvaluer   r   r   rE      s0   
zCheckingClassifier.fitc                 C   s:   | j dks
d| j v r| |\}}| jtjt|td S )a>  Predict the first class seen in `classes_`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        preds : ndarray of shape (n_samples,)
            Predictions of the first class seens in `classes_`.
        r0   predict)r&   )r6   rD   rK   r<   zerosr   intr   r>   r?   r   r   r   rU      s   zCheckingClassifier.predictc                 C   sN   | j dks
d| j v r| |\}}tt|t| jf}d|dddf< |S )a  Predict probabilities for each class.

        Here, the dummy classifier will provide a probability of 1 for the
        first class of `classes_` and 0 otherwise.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        proba : ndarray of shape (n_samples, n_classes)
            The probabilities for each sample and class.
        r0   predict_probar   Nr   )r6   rD   r<   rV   r   r#   rK   )r   r>   r?   probar   r   r   rY      s
   z CheckingClassifier.predict_probac                 C   sj   | j dks
d| j v r| |\}}t| jdkrtt|S tt|t| jf}d|dddf< |S )aB  Confidence score.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data.

        Returns
        -------
        decision : ndarray of shape (n_samples,) if n_classes == 2                else (n_samples, n_classes)
            Confidence score.
        r0   decision_functionr   r   Nr   )r6   rD   r#   rK   r<   rV   r   )r   r>   r?   decisionr   r   r   r[   	  s   

z$CheckingClassifier.decision_functionc                 C   s:   | j dks
d| j v r| || | jdkrd}|S d}|S )aQ  Fake score.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Y : array-like of shape (n_samples, n_output) or (n_samples,)
            Target relative to X for classification or regression;
            None for unsupervised learning.

        Returns
        -------
        score : float
            Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>
            score=1` otherwise `score=0`).
        r0   scorer   g      ?g        )r6   rD   r7   )r   r>   Yr]   r   r   r   r]   %  s   
zCheckingClassifier.scorec                 C   s   ddgdS )NT1dlabel)
_skip_testX_typesr   r$   r   r   r   
_more_tags@     zCheckingClassifier._more_tags)NTr   )NN)r   r   r   r   r   rD   rE   rU   rY   r[   r]   rb   r   r   r   r   r/   :   s$    B

#0
r/   c                   @   s:   e Zd ZdZdddZdd Zdd Zd	d
 Zdd ZdS )NoSampleWeightWrapperzWrap estimator which will not expose `sample_weight`.

    Parameters
    ----------
    est : estimator, default=None
        The estimator to wrap.
    Nc                 C   r   r   )est)r   re   r   r   r   r   M  r   zNoSampleWeightWrapper.__init__c                 C   s   | j ||S r   )re   rE   rX   r   r   r   rE   P  r   zNoSampleWeightWrapper.fitc                 C      | j |S r   )re   rU   r   r>   r   r   r   rU   S  rc   zNoSampleWeightWrapper.predictc                 C   rf   r   )re   rY   rg   r   r   r   rY   V  rc   z#NoSampleWeightWrapper.predict_probac                 C   s   ddiS )Nr`   Tr   r$   r   r   r   rb   Y  s   z NoSampleWeightWrapper._more_tagsr   )	r   r   r   r   r   rE   rU   rY   rb   r   r   r   r   rd   D  s    
rd   )numpyr<   baser   r   
validationr   r   r   r	   r
   r   r/   rd   r   r   r   r   <module>   s    $  