
    Ph/                     <    d dl mZmZ d dlmZ  G d de      ZdgZy)   )PretrainedConfiglayer_type_validationrope_config_validationc                        e Zd ZdZdZdgZddddddddZd	gd
gfddgdgfdgdgfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zd Z	 xZ
S )Olmo3Configa  
    This is the configuration class to store the configuration of a [`Olmo3Model`]. It is used to instantiate an OLMo3
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the [allenai/OLMo-3-0725-1B](https://huggingface.co/allenai/OLMo-3-0725-1B).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50304):
            Vocabulary size of the Olmo3 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Olmo3Model`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 50279):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`list[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        sliding_window (`int`, *optional*, defaults to 4096):
            Size of the sliding window for sliding window attention.
        layer_types (`list`, *optional*):
            Attention pattern for each layer. Defaults to sliding window attention
            for 3 out of 4 layers, and full attention for every 4th layer.

    ```python
    >>> from transformers import Olmo3Model, Olmo3Config

    >>> # Initializing a Olmo3 7B style configuration
    >>> configuration = Olmo3Config()

    >>> # Initializing a model from the Olmo3 7B style configuration
    >>> model = Olmo3Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    olmo3past_key_valuescolwise_reprowwise_repcolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                    t        |   d||||d| || _        || _        || _        || _        || _        || _        ||}|| _        || _	        |	| _
        |
| _        || _        || _        | j                          || _        || _        || _        || _        || _        | j&                  5t)        | j                        D cg c]  }|dz   dz  dk7  rdnd c}| _        t+        | j&                         y c c}w )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings          sliding_attentionfull_attention )super__init__
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_range	use_cache
rope_thetarope_scaling_rope_scaling_validationattention_biasattention_dropoutrms_norm_epssliding_windowlayer_typesranger   )selfr#   r%   r&   r'   r(   r)   r*   r$   r+   r,   r   r   r   r   r-   r.   r0   r1   r2   r3   r4   kwargsi	__class__s                           g/var/www/html/saasai/venv/lib/python3.12/site-packages/transformers/models/olmo3/configuration_olmo3.pyr"   zOlmo3Config.__init__   s.   2 	 	
%%% 3		

 	
 %'>$&!2!2#6  &"5#6 $!2"$(%%',!2(,&#W\]a]s]sWt WtRSA{a'7#=MMWt D 	d../ s   C8c                     t        |        y)z<
        Validate the `rope_scaling` configuration.
        Nr   )r6   s    r:   r/   z$Olmo3Config._rope_scaling_validation   s     	t$    )i     i +      r>   Nsilui   g{Gz?Tr   Nig  Fg     @NFg        gh㈵>r=   N)__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr"   r/   __classcell__)r9   s   @r:   r   r      s    m^ J#4"5%2%2%2%2"+ )"+ &(9:#%568IJ!"_$56   $!-=0~%r<   r   N)configuration_utilsr   r   modeling_rope_utilsr   r   __all__r    r<   r:   <module>rL      s'   , K 9D%" D%N /r<   