
    @h                     n    S SK Jr  S SKJr   " S S\\\\4      5      rSr\" \/ SQS9r	Sr
\" \
/ S	QS9rg
)    )BaseOutputParser)PromptTemplatec                   F    \ rS rSr% SrSr\\S'    S\S\\\	4   4S jr
Srg	)
FinishedOutputParser   z4Output parser that checks if the output is finished.FINISHEDfinished_valuetextreturnc                 |    UR                  5       nU R                  U;   nUR                  U R                  S5      U4$ )N )stripr	   replace)selfr
   cleanedfinisheds       V/var/www/html/shao/venv/lib/python3.13/site-packages/langchain/chains/flare/prompts.pyparseFinishedOutputParser.parse   s9    **,&&'1t22B7AA     N)__name__
__module____qualname____firstlineno____doc__r	   str__annotations__tupleboolr   __static_attributes__r   r   r   r   r      s1    >$NC$6B# B%T	"2 Br   r   zRespond to the user message using any relevant context. If context is provided, you should ground your answer in that context. Once you're done responding return FINISHED.

>>> CONTEXT: {context}
>>> USER INPUT: {user_input}
>>> RESPONSE: {response})
user_inputcontextresponse)templateinput_variablesa&  Given a user input and an existing partial response as context, ask a question to which the answer is the given term/entity/phrase:

>>> USER INPUT: {user_input}
>>> EXISTING PARTIAL RESPONSE: {current_response}

The question to which the answer is the term/entity/phrase "{uncertain_span}" is:)r"   current_responseuncertain_spanN)langchain_core.output_parsersr   langchain_core.promptsr   r   r   r    r   PROMPT_TEMPLATEPROMPT"QUESTION_GENERATOR_PROMPT_TEMPLATEQUESTION_GENERATOR_PROMPTr   r   r   <module>r/      s]    : 1	B+E#t),<= 	B 
9
&U " +/H r   