
    ,hq                     b    % S q \\S'   S q\\S'   S\SS4S jrS\4S jrS\SS4S jrS\4S	 jrg)
F&_overwrite_module_params_on_conversion!_swap_module_params_on_conversionvaluereturnNc                     U q g)a  
Sets whether to assign new tensors to the parameters instead of changing the
existing parameters in-place when converting an ``nn.Module``.

When enabled, the following methods will assign new parameters to the module:

#. ``module.{device}()`` (e.g. :meth:`nn.Module.cuda()`) for moving a module between devices
#. ``module.{dtype}()`` (e.g. :meth:`nn.Module.float()`) for converting a module to a different dtype
#. :meth:`nn.Module.to`
#. :meth:`nn.Module.to_empty`

Args:
    value (bool): Whether to assign new tensors or not.

Nr   r   s    H/var/www/html/shao/venv/lib/python3.13/site-packages/torch/__future__.py)set_overwrite_module_params_on_conversionr
      s
    " .3*    c                      [         $ )a  
Returns whether to assign new tensors to the parameters instead of changing the
existing parameters in-place when converting an :class:`torch.nn.Module`. Defaults to ``False``.

See :func:`~torch.__future__.set_overwrite_module_params_on_conversion` for more information.
r    r   r	   )get_overwrite_module_params_on_conversionr      s
     21r   c                     U q g)a  
Sets whether to use :func:`~torch.utils.swap_tensors` instead of setting ``.data`` to
change the existing parameters in-place when converting an ``nn.Module`` and instead
of ``param.copy_(state_dict[key])`` when loading a state dict into an ``nn.Module``.

.. note::
    This function takes precedence over :func:`~torch.__future__.get_overwrite_module_params_on_conversion`

When enabled, the following methods will swap the existing parameters in-place:

#. ``module.{device}()`` (e.g. :meth:`nn.Module.cuda()`) for moving a module between devices
#. ``module.{dtype}()`` (e.g. :meth:`nn.Module.float()`) for converting a module to a different dtype
#. :meth:`nn.Module.to`
#. :meth:`nn.Module.to_empty`
#. :meth:`nn.Module.load_state_dict`

The semantics for :meth:`~nn.Module.load_state_dict` when this is set are as follows:

#. For each parameter/buffer, its corresponding ``state_dict['key']`` is transformed via
   :meth:`~torch.Tensor.module_load` (i.e. ``res = param.module_load(state_dict['key'])``)
#. If necessary, ``res`` will be wrapped in an :class:`~nn.Parameter`
#. The parameter/buffer in the module will be swapped via :func:`~torch.utils.swap_tensors`
   with ``res``

Args:
    value (bool): Whether to use :func:`~torch.utils.swap_tensors` or not.

Nr   r   s    r	   $set_swap_module_params_on_conversionr   #   s
    < ).%r   c                      [         $ )a  
Returns whether to use :func:`~torch.utils.swap_tensors` instead of setting .data to
change the existing parameters in-place when converting an ``nn.Module``. Defaults to ``False``.

See :func:`~torch.__future__.set_swap_module_params_on_conversion` for more information.
r   r   r   r	   $get_swap_module_params_on_conversionr   D   s
     -,r   )r   bool__annotations__r   r
   r   r   r   r   r   r	   <module>r      s\    4u & 4*/ !4 /3T 3d 3(24 2. . .B-d -r   