
    <h[                        S SK JrJrJr  S SKrS SKJr  SSKJr  SSK	J
r
Jr  SSKJr  SSKJrJr  SSKJr  SS	KJr  SS
KJrJr  SSKJrJr  SSKJrJr  SSKJr  SSK J!r!J"r"J#r#  SSK$J%r%  SSK&J'r'   " S S\RP                  5      r) " S S\RP                  5      r*S\RV                  S\,S\RV                  4S jr- S2S\RP                  S\RV                  S\RV                  S\RV                  S\\RV                     S\.S \.S!\\!   4S" jjr/S# r0S3S$ jr1 " S% S&\RP                  5      r2 " S' S(\RP                  5      r3 " S) S*\5      r4\" " S+ S,\5      5       r5\" " S- S.\55      5       r6\" " S/ S0\5\5      5       r7/ S1Qr8g)4    )CallableOptionalUnionN   )ACT2FN)CacheDynamicCache)GenerationMixin)create_causal_mask!create_sliding_window_causal_mask)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPast)ROPE_INIT_FUNCTIONSdynamic_rope_update)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)TransformersKwargsauto_docstringcan_return_tuple)check_model_inputs   )Cohere2Configc                   l   ^  \ rS rSrSS\4U 4S jjjr\R                  " 5       \S 5       5       r	Sr
U =r$ )Cohere2RotaryEmbedding*   configc                   > [         TU ]  5         [        US5      (       aZ  [        UR                  [
        5      (       a;  UR                  R                  SUR                  R                  S5      5      U l        OSU l        UR                  U l	        UR                  U l
        Xl        [        U R                     U l        U R                  U R                  U5      u  o0l        U R                  SUSS9  U R                   U l        g )Nrope_scaling	rope_typetypedefaultinv_freqF)
persistent)super__init__hasattr
isinstancer!   dictgetr"   max_position_embeddingsmax_seq_len_cachedoriginal_max_seq_lenr   r   rope_init_fnattention_scalingregister_bufferr%   original_inv_freq)selfr   devicer%   	__class__s       d/var/www/html/shao/venv/lib/python3.13/site-packages/transformers/models/cohere2/modeling_cohere2.pyr(   Cohere2RotaryEmbedding.__init__+   s    6>**z&:M:Mt/T/T#0044[&BUBUBYBYZ`BabDN&DN"("@"@$*$B$B!/?+/+<+<T[[&+Q((ZeD!%    c                 0   U R                   S S S 2S 4   R                  5       R                  UR                  S   SS5      nUS S 2S S S 24   R                  5       n[	        UR
                  R                  [        5      (       a0  UR
                  R                  S:w  a  UR
                  R                  OSn[        R                  " USS9   UR                  5       UR                  5       -  R                  SS5      n[        R                  " USSS	9nUR                  5       U R                  -  nUR                  5       U R                  -  n	S S S 5        WR                  UR                   S
9W	R                  UR                   S
94$ ! , (       d  f       N@= f)Nr   r   mpscpuF)device_typeenabled   dimdtype)r%   floatexpandshaper*   r5   r#   strtorchautocast	transposerepeat_interleavecosr1   sintorD   )
r4   xposition_idsinv_freq_expandedposition_ids_expandedr>   freqsembrM   rN   s
             r7   forwardCohere2RotaryEmbedding.forward<   sB    !MM$4-8>>@GGHZHZ[\H]_acde ,QaZ 8 > > @'1!((--'E'E!((--[`J`ahhmmfk^^UC&,,.1F1L1L1NNYYZ[]^_E))%;C'')d444C'')d444C	 D vvAGGv$cff177f&;;; DCs   BF
F)r1   r   r.   r3   r/   r0   r"   N)__name__
__module____qualname____firstlineno__r   r(   rI   no_gradr   rV   __static_attributes____classcell__r6   s   @r7   r   r   *   s6    /} / /" ]]_<  <r9   r   c                   2   ^  \ rS rSrSU 4S jjrS rSrU =r$ )Cohere2LayerNormL   c                    > [         TU ]  5         [        R                  " [        R
                  " U5      5      U l        X l        g)zcThe hidden size can be a tuple or an int. The tuple is used for QKNorm to normalize across head_dimN)r'   r(   nn	ParameterrI   onesweightvariance_epsilon)r4   hidden_sizeepsbiasr6   s       r7   r(   Cohere2LayerNorm.__init__M   s-    ll5::k#:; #r9   c                    UR                   nUR                  [        R                  5      nUR	                  SSS9nX-
  R                  S5      R	                  SSS9nX-
  [        R                  " X@R                  -   5      -  nU R                  R                  [        R                  5      U-  nUR                  U5      $ )Nr;   T)keepdimr@   )	rD   rO   rI   float32meanpowrsqrtri   rh   )r4   hidden_statesinput_dtyperq   variances        r7   rV   Cohere2LayerNorm.forwardS   s    #))%((7!!"d!3!(--a055b$5G&-XH]H]=]1^^u}}5E,,r9   )ri   rh   )Ngh㈵>FrY   rZ   r[   r\   r(   rV   r^   r_   r`   s   @r7   rb   rb   L   s    $- -r9   rb   rt   n_repreturnc                     U R                   u  p#pEUS:X  a  U $ U SS2SS2SSS2SS24   R                  X#XU5      n U R                  X#U-  XE5      $ )z
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
r   N)rG   rF   reshape)rt   ry   batchnum_key_value_headsslenhead_dims         r7   	repeat_kvr   ]   s_    
 2?1D1D.Ez!!Qa"23::5W\dlmM  e(CTTTr9   modulequerykeyvalueattention_maskscalingdropoutkwargsc                 @   [        X R                  5      n[        X0R                  5      n	[        R                  " XR	                  SS5      5      U-  n
Ub"  US S 2S S 2S S 2S UR
                  S   24   nX-   n
[        R                  R                  U
S[        R                  S9R                  UR                  5      n
[        R                  R                  XU R                  S9n
[        R                  " X5      nUR	                  SS5      R                  5       nX4$ )Nr@   r   r;   )rB   rD   )ptrainingr   )r   num_key_value_groupsrI   matmulrK   rG   re   
functionalsoftmaxrp   rO   rD   r   r   
contiguous)r   r   r   r   r   r   r   r   
key_statesvalue_statesattn_weightscausal_maskattn_outputs                r7   eager_attention_forwardr   i   s     3 ; ;<JU$?$?@L<<';';Aq'ABWLL!$Q1.D
0@0@0D.D%DE#1==((2U]](SVVW\WbWbcL==((6??([L,,|:K''1-88:K$$r9   c                 |    U SS S S24   nU SSS S24   n[         R                  " U* U/SS9R                  S5      nU$ )N.r@   r   r;   rA   r   )rI   stackflatten)rP   x1x2rot_xs       r7   rotate_halfr      sL    	
3!8B	
319BKK"b	r*2226ELr9   c                 &   U R                   nU R                  5       n UR                  5       nUR                  U5      nUR                  U5      nX-  [        U 5      U-  -   nX-  [        U5      U-  -   nUR	                  US9UR	                  US94$ )a  Applies Rotary Position Embedding to the query and key tensors.

Args:
    q (`torch.Tensor`): The query tensor.
    k (`torch.Tensor`): The key tensor.
    cos (`torch.Tensor`): The cosine part of the rotary embedding.
    sin (`torch.Tensor`): The sine part of the rotary embedding.
    position_ids (`torch.Tensor`, *optional*):
        Deprecated and unused.
    unsqueeze_dim (`int`, *optional*, defaults to 1):
        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
rC   )rD   rE   	unsqueezer   rO   )	qkrM   rN   rQ   unsqueeze_dimrD   q_embedk_embeds	            r7   apply_rotary_pos_embr      s    ( GGE		A		A
--
&C
--
&Cw;q>C/0Gw;q>C/0G::E:"GJJUJ$;;;r9   c                   P  ^  \ rS rSrSrSS\S\\   4U 4S jjjr  SS\	R                  S\\	R                  \	R                  4   S\\	R                     S	\\   S
\\	R                     S\\   S\\	R                  \\	R                     \\\	R                        4   4S jjrSrU =r$ )Cohere2Attention   z=Multi-headed attention from 'Attention Is All You Need' paperr   	layer_idxc                   > [         TU ]  5         Xl        X l        [	        USUR
                  UR                  -  5      U l        UR                  UR                  -  U l	        U R                  S-  U l
        UR                  U l        SU l        UR                  U   S:X  a  UR                  OS U l        [        R                   " UR
                  UR                  U R                  -  UR"                  S9U l        [        R                   " UR
                  UR                  U R                  -  UR"                  S9U l        [        R                   " UR
                  UR                  U R                  -  UR"                  S9U l        [        R                   " UR                  U R                  -  UR
                  UR"                  S9U l        g )Nr   g      Tsliding_attentionrl   )r'   r(   r   r   getattrrj   num_attention_headsr   r~   r   r   attention_dropout	is_causallayer_typessliding_windowre   Linearattention_biasq_projk_projv_projo_projr4   r   r   r6   s      r7   r(   Cohere2Attention.__init__   sm   "
F4F4F&JdJd4de$*$>$>&B\B\$\!}}d*!'!9!97=7I7I)7TXk7kf33quii : :T]] JQWQfQf
 ii : :T]] JQWQfQf
 ii : :T]] JQWQfQf
 ii&&68J8JQWQfQf
r9   rt   position_embeddingsr   past_key_valuecache_positionr   rz   c                 d   UR                   S S n/ UQSPU R                  P7nU R                  U5      R                  U5      R	                  SS5      n	U R                  U5      R                  U5      R	                  SS5      n
U R                  U5      R                  U5      R	                  SS5      nUu  pU R                  b  [        XX5      u  pUb$  XUS.nUR                  XU R                  U5      u  p[        nU R                  R                  S:w  a  [        U R                  R                     nU" U U	U
UU4U R                  (       d  SOU R                   U R"                  U R                  S.UD6u  nnUR$                  " / UQSP76 R'                  5       nU R)                  U5      nUU4$ )Nr;   r   r@   )rN   rM   r   eager        )r   r   r   )rG   r   r   viewrK   r   r   r   r   updater   r   r   _attn_implementationr   r   r   r   r|   r   r   )r4   rt   r   r   r   r   r   input_shapehidden_shapequery_statesr   r   rM   rN   cache_kwargsattention_interfacer   r   s                     r7   rV   Cohere2Attention.forward   s    $))#2.88b8$--8{{=166|DNNqRST[[/44\BLLQPQR
{{=166|DNNqRST&*';LVY'_$L%#&nUL'5'<'<ZW[WeWegs't$J(?;;++w6"9$++:Z:Z"[$7
%
  $}}C$2H2HLL..
%
 
%
!\ "));;;;FFHkk+.L((r9   )r   r   r   r   r   r   r   r   r   r   r   r   rX   )NN)rY   rZ   r[   r\   __doc__r   r   intr(   rI   Tensortupler   
LongTensorr   r   rV   r^   r_   r`   s   @r7   r   r      s    G
} 
# 
 
: +/59*)||*) #5<<#=>*) !.	*)
 !*) !!1!12*) -.*) 
u||Xell3XeELL>Q5RR	S*) *)r9   r   c                   .   ^  \ rS rSrU 4S jrS rSrU =r$ )
Cohere2MLP   c                   > [         TU ]  5         Xl        UR                  U l        UR                  U l        [
        R                  " U R                  U R                  SS9U l        [
        R                  " U R                  U R                  SS9U l        [
        R                  " U R                  U R                  SS9U l	        [        UR                     U l        g NFr   )r'   r(   r   rj   intermediate_sizere   r   	gate_projup_proj	down_projr   
hidden_actact_fnr4   r   r6   s     r7   r(   Cohere2MLP.__init__   s    !--!'!9!94#3#3T5K5KRWXyy!1!143I3IPUV4#9#94;K;KRWXV../r9   c                     U R                  U R                  U R                  U5      5      U R                  U5      -  5      nU$ rX   )r   r   r   r   )r4   rP   r   s      r7   rV   Cohere2MLP.forward   s6    NN4;;t~~a/@#ADLLQRO#ST	r9   )r   r   r   r   rj   r   r   rx   r`   s   @r7   r   r      s    0 r9   r   c                   L  ^  \ rS rSrS\S\4U 4S jjr    SS\R                  S\	\R                  \R                  4   S\
\R                     S\
\   S	\
\   S
\
\R                     S\\   S\	\R                   \
\	\R                   \R                   4      4   4S jjrSrU =r$ )Cohere2DecoderLayeri  r   r   c                    > [         TU ]  5         UR                  U l        [        XS9U l        [        U5      U l        [        UR                  UR                  S9U l	        UR                  U   U l        g )N)r   r   rj   rk   )r'   r(   rj   r   	self_attnr   mlprb   layer_norm_epsinput_layernormr   attention_typer   s      r7   r(   Cohere2DecoderLayer.__init__  sc    !--)Mf%/V=O=OV\VkVkl$00;r9   rt   r   r   r   	use_cacher   r   rz   c           
          UnU R                  U5      nU R                  " SUUUUUUS.UD6u  pU R                  U5      nX-   U-   nU$ )a  
Args:
    hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
    attention_mask (`torch.FloatTensor`, *optional*):
        attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
        query_sequence_length, key_sequence_length)` if default attention is used.
    past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
    output_attentions (`bool`, *optional*):
        Whether or not to return the attentions tensors of all attention layers. See `attentions` under
        returned tensors for more detail.
    use_cache (`bool`, *optional*):
        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
        (see `past_key_values`).
    cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
        Indices depicting the position of the input sequence tokens in the sequence
    position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
        Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
        with `head_dim` being the embedding dimension of each attention head.
)rt   r   r   r   r   r    )r   r   r   )r4   rt   r   r   r   r   r   r   residualhidden_states_attention_hidden_states_mlps               r7   rV   Cohere2DecoderLayer.forward
  sq    : !,,];%)^^ &
' 3)))&
 &
" !HH]3 :=NNr9   )r   rj   r   r   r   )NNFN)rY   rZ   r[   r\   r   r   r(   rI   r   r   r   r   boolr   r   r   FloatTensorrV   r^   r_   r`   s   @r7   r   r     s    <} < < 26*.$)59+||+ #5<<#=>+ !.	+
 !+ D>+ !!1!12+ -.+ 
u  (51B1BEDUDU1U+V"WW	X+ +r9   r   c                   R    \ rS rSr% \\S'   SrSrS/rS/r	Sr
SrSrSrSr\\S.rSrg	)
Cohere2PreTrainedModeli8  r   modelTr   past_key_values)rt   
attentionsr   N)rY   rZ   r[   r\   r   __annotations__base_model_prefixsupports_gradient_checkpointing_no_split_modules_skip_keys_device_placement_supports_flash_attn_supports_sdpa_supports_flex_attn_can_compile_fullgraph_supports_attention_backendr   r   _can_record_outputsr^   r   r9   r7   r   r   8  sQ    &*#./#4"5N!"&,&r9   r   c                     ^  \ rS rSrS\4U 4S jjr\\       SS\\	R                     S\\	R                     S\\	R                     S\\   S\\	R                     S	\\   S
\\	R                     S\\   S\4S jj5       5       rSrU =r$ )Cohere2ModeliK  r   c           	        > [         TU ]  U5        UR                  U l        UR                  U l        [
        R                  " UR                  UR                  U R                  5      U l        [
        R                  " [        UR                  5       Vs/ sH  n[        X5      PM     sn5      U l        [        UR                  UR                  S9U l        [#        US9U l        SU l        U R)                  5         g s  snf )Nr   )r   F)r'   r(   pad_token_idpadding_idx
vocab_sizere   	Embeddingrj   embed_tokens
ModuleListrangenum_hidden_layersr   layersrb   r   normr   
rotary_embgradient_checkpointing	post_initr   s      r7   r(   Cohere2Model.__init__M  s     !.. ++LL):):F<N<NPTP`P`ammEJ6KcKcEdeEd	 3Ede
 %&2D2D6K`K`a	0?&+# 	 fs   C>	input_idsr   rQ   r   inputs_embedsr   r   r   rz   c           
         US L US L-  (       a  [        S5      eUc  U R                  U5      nU(       a  Uc  U R                  (       d
  [        5       nUcD  Ub  UR	                  5       OSn	[
        R                  " XUR                  S   -   UR                  S9nUc  UR                  S5      n[        U=n
[        5      (       d*  U R                  UUUUUS.n[        S	0 UD6[        S	0 UD6S.n
UnU R                  X5      nU R                    H  nU" U4UXR"                     UUUS.UD6nM      U R%                  U5      n['        UUS9$ )
Nz:You must specify exactly one of input_ids or inputs_embedsr   r   )r5   )r   input_embedsr   r   r   rQ   )full_attentionr   )r   r   r   r   r   )last_hidden_stater   r   )
ValueErrorr  r   r	   get_seq_lengthrI   arangerG   r5   r   r*   r+   r   r   r   r  r  r   r  r   )r4   r  r   rQ   r   r  r   r   r   past_seen_tokenscausal_mask_mappingmask_kwargsrt   r   decoder_layers                  r7   rV   Cohere2Model.forward]  sw    -t";<YZZ  --i8M0*nO!CRC^==?de"\\ ]5H5H5K"KTaThThN )33A6L?-FF++ -"0"0#2 ,K #5"C{"C%F%U%U#
 &"oomJ![[M)$723O3OP.#- M ) 		-0&++
 	
r9   )r  r  r  r  r  r  r	  )NNNNNNN)rY   rZ   r[   r\   r   r(   r   r   r   rI   r   r   r   r   r   r   r   r   rV   r^   r_   r`   s   @r7   r  r  K  s    }    151537+/59$(59<
E,,-<
 !.<
 u//0	<

 "%<
   1 12<
 D><
 !!1!12<
 +,<
 
!<
  <
r9   r  c                     ^  \ rS rSrS/rSS0rSS/S/40rU 4S jrS rS	 r	\
\           SS
\\R                     S\\R                     S\\R                     S\\\\\R&                     4      S\\R&                     S\\R                     S\\   S\\   S\\   S\\R                     S\\\R                  4   S\\   S\4S jj5       5       rSrU =r$ )Cohere2ForCausalLMi  zlm_head.weightlm_headcolwise_reprt   logitsc                 (  > [         TU ]  U5        [        U5      U l        UR                  U l        [
        R                  " UR                  UR                  SS9U l        UR                  U l	        UR                  U l
        U R                  5         g r   )r'   r(   r  r   r	  re   r   rj   r%  logit_scaletie_word_embeddingsr  r   s     r7   r(   Cohere2ForCausalLM.__init__  sq     !&)
 ++yy!3!3V5F5FUS!--#)#=#=  	r9   c                     Xl         g rX   r   )r4   decoders     r7   set_decoderCohere2ForCausalLM.set_decoder  s    
r9   c                     U R                   $ rX   r-  )r4   s    r7   get_decoderCohere2ForCausalLM.get_decoder  s    zzr9   r  r   rQ   r   r  labelsr   output_attentionsoutput_hidden_statesr   logits_to_keepr   rz   c                    Ub  UOU R                   R                  nU	b  U	OU R                   R                  n	U R                  " SUUUUUUUU	U
S.	UD6nUR                  n[        U[        5      (       a  [        U* S5      OUnU R                  USS2USS24   5      nUU R                  -  nSnUb)  U R                  " SUX`R                   R                  S.UD6n[        UUUR                  UR                  UR                  S9$ )a  
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
    Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
    config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
    (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

Example:

```python
>> from transformers import AutoTokenizer, Cohere2ForCausalLM

>> model = Cohere2ForCausalLM.from_pretrained("Cohere2ForAI/c4ai-command-r-v01")
>> tokenizer = AutoTokenizer.from_pretrained("Cohere2ForAI/c4ai-command-r-v01")

>> prompt = "Hey, are you conscious? Can you talk to me?"
>> inputs = tokenizer(prompt, return_tensors="pt")

>> # Generate
>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```N)	r  r   rQ   r   r  r   r5  r6  r   )r'  r4  r	  )lossr'  r   rt   r   r   )r   r5  r6  r   r  r*   r   slicer%  r)  loss_functionr	  r   r   rt   r   )r4   r  r   rQ   r   r  r4  r   r5  r6  r   r7  r   outputsrt   slice_indicesr'  r9  s                     r7   rV   Cohere2ForCausalLM.forward  s(   N 2C1N-TXT_T_TqTq$8$D $++JjJj 	
 ,0:: ,
)%+'/!5),
 ,
  118B>SV8W8W~ot4]kmA}a,?@A$***%%pVF{{OeOepiopD%#33!//))
 	
r9   )r%  r)  r   r*  r	  )NNNNNNNNNNr   )rY   rZ   r[   r\   _tied_weights_keys_tp_plan_pp_planr(   r/  r2  r   r   r   rI   r   r   r   r   listr   r   r   r   r   r   rV   r^   r_   r`   s   @r7   r$  r$    s   *+=)H_-z:;H	  151537KO59-1$(,0/35934H
E,,-H
 !.H
 u//0	H

 "%tE4E4E/F(F"GHH
   1 12H
 ))*H
 D>H
 $D>H
 'tnH
 !!1!12H
 c5<</0H
 +,H
 
 H
  H
r9   r$  )r$  r  r   )r   )Nr   )9typingr   r   r   rI   torch.nnre   activationsr   cache_utilsr   r	   
generationr
   masking_utilsr   r   modeling_flash_attention_utilsr   modeling_layersr   modeling_outputsr   r   modeling_rope_utilsr   r   modeling_utilsr   r   processing_utilsr   utilsr   r   r   utils.genericr   configuration_cohere2r   Moduler   rb   r   r   r   rE   r   r   r   r   r   r   r   r  r$  __all__r   r9   r7   <module>rT     s  , - ,   ! . ) R B 9 O K F & I I / 0<RYY <D-ryy -"	UU\\ 	U# 	U%,, 	U& %II%<<% 
% <<	%
 U\\*% % % '(%4<<E)ryy E)P  44 4n _  $ O
) O
 O
d `
/ `
 `
F Kr9   