
    <h                        S r SSKrSSKJr  SSKJrJrJr  SSK	r	SSK
r	SSK	Jr  SSKJrJrJr  SSKJr  SS	KJr  SS
KJrJrJrJr  SSKJrJr  SSKJrJr  SSKJ r J!r!J"r"J#r#  SSK$J%r%  \"RL                  " \'5      r( " S S\RR                  5      r* " S S\RR                  5      r+ S>S\RR                  S\	RX                  S\	RX                  S\	RX                  S\\	RX                     S\-S\-4S jjr. " S S\RR                  5      r/ " S S\RR                  5      r0 " S  S!\RR                  5      r1 " S" S#\RR                  5      r2 " S$ S%\RR                  5      r3 " S& S'\5      r4 " S( S)\RR                  5      r5\! " S* S+\5      5       r6\! " S, S-\65      5       r7 " S. S/\RR                  5      r8\!" S0S19 " S2 S3\65      5       r9\!" S4S19 " S5 S6\65      5       r:\\!" S7S19 " S8 S9\ 5      5       5       r;\!" S:S19 " S; S<\65      5       r</ S=Qr=g)?zPyTorch DeiT model.    N)	dataclass)CallableOptionalUnion)nn)BCEWithLogitsLossCrossEntropyLossMSELoss   )ACT2FN)GradientCheckpointingLayer)BaseModelOutputBaseModelOutputWithPoolingImageClassifierOutputMaskedImageModelingOutput)ALL_ATTENTION_FUNCTIONSPreTrainedModel) find_pruneable_heads_and_indicesprune_linear_layer)ModelOutputauto_docstringlogging	torch_int   )
DeiTConfigc            	          ^  \ rS rSrSrSS\S\SS4U 4S jjjrS\R                  S	\
S
\
S\R                  4S jr  SS\R                  S\\R                     S\S\R                  4S jjrSrU =r$ )DeiTEmbeddings+   zn
Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token.
configuse_mask_tokenreturnNc                   > [         TU ]  5         [        R                  " [        R
                  " SSUR                  5      5      U l        [        R                  " [        R
                  " SSUR                  5      5      U l        U(       a6  [        R                  " [        R
                  " SSUR                  5      5      OS U l	        [        U5      U l        U R                  R                  n[        R                  " [        R
                  " SUS-   UR                  5      5      U l        [        R                  " UR                  5      U l        UR"                  U l        g )Nr      )super__init__r   	Parametertorchzeroshidden_size	cls_tokendistillation_token
mask_tokenDeiTPatchEmbeddingspatch_embeddingsnum_patchesposition_embeddingsDropouthidden_dropout_probdropout
patch_size)selfr   r    r/   	__class__s       ^/var/www/html/shao/venv/lib/python3.13/site-packages/transformers/models/deit/modeling_deit.pyr%   DeiTEmbeddings.__init__0   s    ekk!Q8J8J&KL"$,,u{{1aASAS/T"UQ_",,u{{1a9K9K'LMei 3F ;++77#%<<A{QPVPbPb0c#d zz&"<"<= ++    
embeddingsheightwidthc                    UR                   S   S-
  nU R                  R                   S   S-
  n[        R                  R	                  5       (       d  XE:X  a  X#:X  a  U R                  $ U R                  SS2SS24   nU R                  SS2SS24   nUR                   S   nX R
                  -  n	X0R
                  -  n
[        US-  5      nUR                  SXU5      nUR                  SSSS5      n[        R                  R                  UX4SS	S
9nUR                  SSSS5      R                  SSU5      n[        R                  " Xg4SS9$ )a  
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing and 2 class embeddings.

Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
r   r#   N      ?r   r   bicubicF)sizemodealign_cornersdim)shaper0   r'   jit
is_tracingr4   r   reshapepermuter   
functionalinterpolateviewcat)r5   r:   r;   r<   r/   num_positionsclass_and_dist_pos_embedpatch_pos_embedrE   
new_height	new_widthsqrt_num_positionss               r7   interpolate_pos_encoding'DeiTEmbeddings.interpolate_pos_encoding<   sU    !&&q)A-0066q9A= yy##%%+*F6?+++#'#;#;ArrE#B 221ab59r".
__,	&}c'9:)11!5G]`a)11!Q1=--33(	 4 
 *11!Q1=BB1b#Nyy2D!LLr9   pixel_valuesbool_masked_posrU   c                    UR                   u    pEnU R                  U5      nUR                  5       u  pnUbI  U R                  R	                  XS5      n
UR                  S5      R                  U
5      nUSU-
  -  X-  -   nU R                  R	                  USS5      nU R                  R	                  USS5      n[        R                  " XU4SS9nU R                  nU(       a  U R                  XuU5      nX~-   nU R                  U5      nU$ )Nr>         ?r   rD   )rF   r.   rA   r,   expand	unsqueezetype_asr*   r+   r'   rN   r0   rU   r3   )r5   rW   rX   rU   _r;   r<   r:   
batch_size
seq_lengthmask_tokensmask
cls_tokensdistillation_tokensposition_embeddings                  r7   forwardDeiTEmbeddings.forwardd   s    +001e**<8
$.OO$5!
&//00LK",,R088ED#sTz2[5GGJ^^**:r2>
"55<<ZRPYY
LRST
!55#!%!>!>zSX!Y4
\\*-
r9   )r*   r+   r3   r,   r.   r4   r0   )FNF)__name__
__module____qualname____firstlineno____doc__r   boolr%   r'   TensorintrU   r   
BoolTensorrf   __static_attributes____classcell__r6   s   @r7   r   r   +   s    
,z 
,4 
,D 
, 
,&M5<< &M &MUX &M]b]i]i &MV 7;).	ll "%"2"23 #'	
 
 r9   r   c                   f   ^  \ rS rSrSrU 4S jrS\R                  S\R                  4S jrSr	U =r
$ )r-      z
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
c                   > [         TU ]  5         UR                  UR                  p2UR                  UR
                  pT[        U[        R                  R                  5      (       a  UOX"4n[        U[        R                  R                  5      (       a  UOX34nUS   US   -  US   US   -  -  nX l        X0l        X@l        X`l
        [        R                  " XEX3S9U l        g )Nr   r   )kernel_sizestride)r$   r%   
image_sizer4   num_channelsr)   
isinstancecollectionsabcIterabler/   r   Conv2d
projection)r5   r   rz   r4   r{   r)   r/   r6   s          r7   r%   DeiTPatchEmbeddings.__init__   s    !'!2!2F4E4EJ$*$7$79K9Kk#-j+//:R:R#S#SZZdYq
#-j+//:R:R#S#SZZdYq
!!}
15*Q-:VW=:XY$$(&))L:ir9   rW   r!   c                     UR                   u  p#pEX0R                  :w  a  [        S5      eU R                  U5      R	                  S5      R                  SS5      nU$ )NzeMake sure that the channel dimension of the pixel values match with the one set in the configuration.r#   r   )rF   r{   
ValueErrorr   flatten	transpose)r5   rW   r_   r{   r;   r<   xs          r7   rf   DeiTPatchEmbeddings.forward   s[    2>2D2D/
&,,,w  OOL)11!4>>q!Dr9   )rz   r{   r/   r4   r   )ri   rj   rk   rl   rm   r%   r'   ro   rf   rr   rs   rt   s   @r7   r-   r-      s.    jELL U\\  r9   r-   modulequerykeyvalueattention_maskscalingr3   c                    [         R                  " XR                  SS5      5      U-  n[        R                  R                  US[         R                  S9R                  UR                  5      n[        R                  R                  XU R                  S9nUb  X-  n[         R                  " X5      n	U	R                  SS5      R                  5       n	X4$ )Nr>   )rE   dtype)ptrainingr   r#   )r'   matmulr   r   rK   softmaxfloat32tor   r3   r   
contiguous)
r   r   r   r   r   r   r3   kwargsattn_weightsattn_outputs
             r7   eager_attention_forwardr      s     <<}}R'<=GL ==((2U]](SVVW\WbWbcL ==((6??([L !#4,,|3K''1-88:K$$r9   c            
          ^  \ rS rSrS\SS4U 4S jjr  S
S\\R                     S\	S\
\\R                  \R                  4   \\R                     4   4S jjrS	rU =r$ )DeiTSelfAttention   r   r!   Nc                 0  > [         TU ]  5         UR                  UR                  -  S:w  a7  [	        US5      (       d&  [        SUR                   SUR                   S35      eXl        UR                  U l        [        UR                  UR                  -  5      U l        U R                  U R                  -  U l	        UR                  U l        U R                  S-  U l        SU l        [        R                  " UR                  U R                  UR                   S9U l        [        R                  " UR                  U R                  UR                   S9U l        [        R                  " UR                  U R                  UR                   S9U l        g )	Nr   embedding_sizezThe hidden size z4 is not a multiple of the number of attention heads .g      F)bias)r$   r%   r)   num_attention_headshasattrr   r   rp   attention_head_sizeall_head_sizeattention_probs_dropout_probdropout_probr   	is_causalr   Linearqkv_biasr   r   r   r5   r   r6   s     r7   r%   DeiTSelfAttention.__init__   sG    : ::a?PVXhHiHi"6#5#5"6 7334A7 
 #)#=#= #&v'9'9F<V<V'V#W !558P8PP"??//5YYv1143E3EFOO\
99V//1C1C&//ZYYv1143E3EFOO\
r9   	head_maskoutput_attentionsc                    UR                   u  pEnU R                  U5      R                  USU R                  U R                  5      R                  SS5      nU R                  U5      R                  USU R                  U R                  5      R                  SS5      nU R                  U5      R                  USU R                  U R                  5      R                  SS5      n	[        n
U R                  R                  S:w  aT  U R                  R                  S:X  a  U(       a  [        R                  S5        O[        U R                  R                     n
U
" U U	UUUU R                  U R                  U R                   (       d  SOU R"                  S9u  pUR%                  5       S S	 U R&                  4-   nUR)                  U5      nU(       a  X4nU$ U4nU$ )
Nr>   r   r#   eagersdpaz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.        )r   r   r3   r   )rF   r   rM   r   r   r   r   r   r   r   _attn_implementationloggerwarning_oncer   r   r   r   r   rA   r   rI   )r5   hidden_statesr   r   r_   r`   r^   	key_layervalue_layerquery_layerattention_interfacecontext_layerattention_probsnew_context_layer_shapeoutputss                  r7   rf   DeiTSelfAttention.forward   s    %2$7$7!
HH]#T*b$":":D<T<TUYq!_ 	 JJ}%T*b$":":D<T<TUYq!_ 	 JJ}%T*b$":":D<T<TUYq!_ 	 )@;;++w6{{//69>O##L
 '>dkk>^>^&_#)<nnLL#}}C$2C2C	*
& #0"4"4"6s";t?Q?Q>S"S%--.EF6G=2 O\M]r9   )
r   r   r   r   r   r   r   r   r   r   rh   )ri   rj   rk   rl   r   r%   r   r'   ro   rn   r   tuplerf   rr   rs   rt   s   @r7   r   r      sw    ]z ]d ]. -1"'	1 ELL)1  	1
 
uU\\5<</0%2EE	F1 1r9   r   c                      ^  \ rS rSrSrS\SS4U 4S jjrS\R                  S\R                  S\R                  4S	 jr	S
r
U =r$ )DeiTSelfOutputi  z
The residual connection is defined in DeiTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
r   r!   Nc                    > [         TU ]  5         [        R                  " UR                  UR                  5      U l        [        R                  " UR                  5      U l        g N)	r$   r%   r   r   r)   denser1   r2   r3   r   s     r7   r%   DeiTSelfOutput.__init__  sB    YYv1163E3EF
zz&"<"<=r9   r   input_tensorc                 J    U R                  U5      nU R                  U5      nU$ r   r   r3   r5   r   r   s      r7   rf   DeiTSelfOutput.forward  s$    

=1]3r9   r   )ri   rj   rk   rl   rm   r   r%   r'   ro   rf   rr   rs   rt   s   @r7   r   r     sI    
>z >d >
U\\  RWR^R^  r9   r   c                      ^  \ rS rSrS\SS4U 4S jjrS\\   SS4S jr  SS\	R                  S	\\	R                     S
\S\\\	R                  \	R                  4   \\	R                     4   4S jjrSrU =r$ )DeiTAttentioni!  r   r!   Nc                    > [         TU ]  5         [        U5      U l        [	        U5      U l        [        5       U l        g r   )r$   r%   r   	attentionr   outputsetpruned_headsr   s     r7   r%   DeiTAttention.__init__"  s0    *62$V,Er9   headsc                 6   [        U5      S:X  a  g [        XR                  R                  U R                  R                  U R
                  5      u  p[        U R                  R                  U5      U R                  l        [        U R                  R                  U5      U R                  l        [        U R                  R                  U5      U R                  l	        [        U R                  R                  USS9U R                  l        U R                  R                  [        U5      -
  U R                  l        U R                  R                  U R                  R                  -  U R                  l        U R
                  R                  U5      U l        g )Nr   r   rD   )lenr   r   r   r   r   r   r   r   r   r   r   r   union)r5   r   indexs      r7   prune_headsDeiTAttention.prune_heads(  s   u:?7>>55t~~7Y7Y[_[l[l

  2$..2F2FN/0B0BEJ1$..2F2FN.t{{/@/@%QO .2^^-O-ORUV[R\-\*'+~~'I'IDNNLnLn'n$ --33E:r9   r   r   r   c                 f    U R                  XU5      nU R                  US   U5      nU4USS  -   nU$ )Nr   r   )r   r   )r5   r   r   r   self_outputsattention_outputr   s          r7   rf   DeiTAttention.forward:  sC     ~~m@QR;;|AF#%QR(88r9   )r   r   r   rh   )ri   rj   rk   rl   r   r%   r   rp   r   r'   ro   r   rn   r   r   rf   rr   rs   rt   s   @r7   r   r   !  s    "z "d ";S ;d ;* -1"'	|| ELL)  	
 
uU\\5<</0%2EE	F r9   r   c                   n   ^  \ rS rSrS\SS4U 4S jjrS\R                  S\R                  4S jrSr	U =r
$ )	DeiTIntermediateiI  r   r!   Nc                   > [         TU ]  5         [        R                  " UR                  UR
                  5      U l        [        UR                  [        5      (       a  [        UR                     U l        g UR                  U l        g r   )r$   r%   r   r   r)   intermediate_sizer   r|   
hidden_actstrr   intermediate_act_fnr   s     r7   r%   DeiTIntermediate.__init__J  s`    YYv1163K3KL
f''--'-f.?.?'@D$'-'8'8D$r9   r   c                 J    U R                  U5      nU R                  U5      nU$ r   r   r   )r5   r   s     r7   rf   DeiTIntermediate.forwardR  s&    

=100?r9   r   ri   rj   rk   rl   r   r%   r'   ro   rf   rr   rs   rt   s   @r7   r   r   I  s6    9z 9d 9U\\ ell  r9   r   c                      ^  \ rS rSrS\SS4U 4S jjrS\R                  S\R                  S\R                  4S jrS	r	U =r
$ )

DeiTOutputiZ  r   r!   Nc                    > [         TU ]  5         [        R                  " UR                  UR
                  5      U l        [        R                  " UR                  5      U l	        g r   )
r$   r%   r   r   r   r)   r   r1   r2   r3   r   s     r7   r%   DeiTOutput.__init__[  sB    YYv779K9KL
zz&"<"<=r9   r   r   c                 R    U R                  U5      nU R                  U5      nX-   nU$ r   r   r   s      r7   rf   DeiTOutput.forward`  s,    

=1]3%4r9   r   r   rt   s   @r7   r   r   Z  sD    >z >d >
U\\  RWR^R^  r9   r   c                      ^  \ rS rSrSrS\SS4U 4S jjr  SS\R                  S\	\R                     S	\
S\\\R                  \R                  4   \\R                     4   4S
 jjrSrU =r$ )	DeiTLayerij  z?This corresponds to the Block class in the timm implementation.r   r!   Nc                 j  > [         TU ]  5         UR                  U l        SU l        [	        U5      U l        [        U5      U l        [        U5      U l	        [        R                  " UR                  UR                  S9U l        [        R                  " UR                  UR                  S9U l        g )Nr   eps)r$   r%   chunk_size_feed_forwardseq_len_dimr   r   r   intermediater   r   r   	LayerNormr)   layer_norm_epslayernorm_beforelayernorm_afterr   s     r7   r%   DeiTLayer.__init__m  s    '-'E'E$&v.,V4 ( "V-?-?VEZEZ [!||F,>,>FDYDYZr9   r   r   r   c                     U R                  U R                  U5      UUS9nUS   nUSS  nXQ-   nU R                  U5      nU R                  U5      nU R	                  Xq5      nU4U-   nU$ )N)r   r   r   )r   r   r   r   r   )r5   r   r   r   self_attention_outputsr   r   layer_outputs           r7   rf   DeiTLayer.forwardw  s     "&!!-0/ "0 "

 2!4(, )8 ++M:((6 {{<?/G+r9   )r   r   r   r   r   r   r   rh   )ri   rj   rk   rl   rm   r   r%   r'   ro   r   rn   r   r   rf   rr   rs   rt   s   @r7   r   r   j  s    I[z [d [ -1"'	|| ELL)  	
 
uU\\5<</0%2EE	F r9   r   c                      ^  \ rS rSrS\SS4U 4S jjr    SS\R                  S\\R                     S\	S	\	S
\	S\
\\4   4S jjrSrU =r$ )DeiTEncoderi  r   r!   Nc                    > [         TU ]  5         Xl        [        R                  " [        UR                  5       Vs/ sH  n[        U5      PM     sn5      U l        SU l	        g s  snf rh   )
r$   r%   r   r   
ModuleListrangenum_hidden_layersr   layergradient_checkpointing)r5   r   r^   r6   s      r7   r%   DeiTEncoder.__init__  sR    ]]uVE]E]?^#_?^!If$5?^#_`
&+# $`s   A%r   r   r   output_hidden_statesreturn_dictc                 6   U(       a  SOS nU(       a  SOS n[        U R                  5       H9  u  pU(       a  Xa4-   nUb  X(   OS n
U	" XU5      nUS   nU(       d  M1  X{S   4-   nM;     U(       a  Xa4-   nU(       d  [        S XU4 5       5      $ [        UUUS9$ )N r   r   c              3   ,   #    U H  oc  M  Uv   M     g 7fr   r  ).0vs     r7   	<genexpr>&DeiTEncoder.forward.<locals>.<genexpr>  s     m$[q$[s   	)last_hidden_stater   
attentions)	enumerater
  r   r   )r5   r   r   r   r  r  all_hidden_statesall_self_attentionsilayer_modulelayer_head_masklayer_outputss               r7   rf   DeiTEncoder.forward  s     #7BD$5b4(4OA#$58H$H!.7.CilO(IZ[M)!,M  &91=M<O&O#  5   14D Dm]GZ$[mmm++*
 	
r9   )r   r  r
  )NFFT)ri   rj   rk   rl   r   r%   r'   ro   r   rn   r   r   r   rf   rr   rs   rt   s   @r7   r  r    s    ,z ,d , -1"'%* !
||!
 ELL)!
  	!

 #!
 !
 
uo%	&!
 !
r9   r  c                       \ rS rSr% \\S'   SrSrSrS/r	Sr
SrSrSrS\\R                   \R"                  \R$                  4   SS	4S
 jrSrg	)DeiTPreTrainedModeli  r   deitrW   Tr   r   r!   Nc                 .   [        U[        R                  [        R                  45      (       a  [        R                  R                  UR                  R                  R                  [        R                  5      SU R                  R                  S9R                  UR                  R                  5      UR                  l        UR                  b%  UR                  R                  R                  5         gg[        U[        R                   5      (       aJ  UR                  R                  R                  5         UR                  R                  R#                  S5        g[        U[$        5      (       a  UR&                  R                  R                  5         UR(                  R                  R                  5         UR*                  R                  R                  5         UR,                  b%  UR,                  R                  R                  5         ggg)zInitialize the weightsr   )meanstdNrZ   )r|   r   r   r   inittrunc_normal_weightdatar   r'   r   r   initializer_ranger   r   zero_r   fill_r   r*   r0   r+   r,   )r5   r   s     r7   _init_weights!DeiTPreTrainedModel._init_weights  sh   fryy"))455 "$!6!6""%%emm43DKKDaDa "7 "b$$% MM {{&  &&( '--KK""$MM$$S)//!!'')&&++113%%**002  ,!!&&,,. -	 0r9   r  )ri   rj   rk   rl   r   __annotations__base_model_prefixmain_input_namesupports_gradient_checkpointing_no_split_modules_supports_sdpa_supports_flash_attn_supports_flex_attn_supports_attention_backendr   r   r   r   r   r-  rr   r  r9   r7   r!  r!    sd    $O&*#$N"&/E"))RYY*L$M /RV /r9   r!  c                     ^  \ rS rSrSS\S\S\SS4U 4S jjjrS\4S jrS	 r	\
       SS
\\R                     S\\R                     S\\R                     S\\   S\\   S\\   S\S\\\4   4S jj5       rSrU =r$ )	DeiTModeli  r   add_pooling_layerr    r!   Nc                   > [         TU ]  U5        Xl        [        XS9U l        [        U5      U l        [        R                  " UR                  UR                  S9U l        U(       a  [        U5      OSU l        U R                  5         g)z
add_pooling_layer (bool, *optional*, defaults to `True`):
    Whether to add a pooling layer
use_mask_token (`bool`, *optional*, defaults to `False`):
    Whether to use a mask token for masked image modeling.
)r    r   N)r$   r%   r   r   r:   r  encoderr   r   r)   r   	layernorm
DeiTPoolerpooler	post_init)r5   r   r:  r    r6   s       r7   r%   DeiTModel.__init__  si     	 (O"6*f&8&8f>S>ST,=j(4 	r9   c                 .    U R                   R                  $ r   )r:   r.   )r5   s    r7   get_input_embeddingsDeiTModel.get_input_embeddings  s    ///r9   c                     UR                  5        H7  u  p#U R                  R                  U   R                  R	                  U5        M9     g)z
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
N)itemsr<  r
  r   r   )r5   heads_to_pruner
  r   s       r7   _prune_headsDeiTModel._prune_heads  s<    
 +002LELLu%//;;EB 3r9   rW   rX   r   r   r  r  rU   c                    Ub  UOU R                   R                  nUb  UOU R                   R                  nUb  UOU R                   R                  nUc  [	        S5      eU R                  X0R                   R                  5      nU R                  R                  R                  R                  R                  nUR                  U:w  a  UR                  U5      nU R                  XUS9n	U R                  U	UUUUS9n
U
S   nU R                  U5      nU R                  b  U R                  U5      OSnU(       d  Ub  X4OU4nXSS -   $ [!        UUU
R"                  U
R$                  S9$ )z
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
    Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Nz You have to specify pixel_values)rX   rU   )r   r   r  r  r   r   )r  pooler_outputr   r  )r   r   r  use_return_dictr   get_head_maskr	  r:   r.   r   r(  r   r   r<  r=  r?  r   r   r  )r5   rW   rX   r   r   r  r  rU   expected_dtypeembedding_outputencoder_outputssequence_outputpooled_outputhead_outputss                 r7   rf   DeiTModel.forward  s|    2C1N-TXT_T_TqTq$8$D $++JjJj 	 &1%<k$++B]B]?@@ &&y++2O2OP	 99DDKKQQ/'??>:L??Tl + 
 ,,/!5# ' 
 *!,..98<8OO4UY?L?XO;_n^pL!""555)-')77&11	
 	
r9   )r   r:   r<  r=  r?  )TFNNNNNNF)ri   rj   rk   rl   r   rn   r%   r-   rC  rH  r   r   r'   ro   rq   r   r   r   rf   rr   rs   rt   s   @r7   r9  r9    s    z d [_ lp  &0&9 0C  046:,0,0/3&*).;
u||,;
 "%"2"23;
 ELL)	;

 $D>;
 'tn;
 d^;
 #';
 
u00	1;
 ;
r9   r9  c                   6   ^  \ rS rSrS\4U 4S jjrS rSrU =r$ )r>  iA  r   c                    > [         TU ]  5         [        R                  " UR                  UR
                  5      U l        [        UR                     U l	        g r   )
r$   r%   r   r   r)   pooler_output_sizer   r   
pooler_act
activationr   s     r7   r%   DeiTPooler.__init__B  s>    YYv1163L3LM
 !2!23r9   c                 \    US S 2S4   nU R                  U5      nU R                  U5      nU$ )Nr   )r   rZ  )r5   r   first_token_tensorrR  s       r7   rf   DeiTPooler.forwardG  s6     +1a40

#566r9   )rZ  r   )	ri   rj   rk   rl   r   r%   rf   rr   rs   rt   s   @r7   r>  r>  A  s    4z 4
 r9   r>  ad  
    DeiT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://huggingface.co/papers/2111.09886).

    <Tip>

    Note that we provide a script to pre-train this model on custom data in our [examples
    directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).

    </Tip>
    )custom_introc                      ^  \ rS rSrS\SS4U 4S jjr\       SS\\R                     S\\R                     S\\R                     S	\\   S
\\   S\\   S\S\\\4   4S jj5       rSrU =r$ )DeiTForMaskedImageModelingiP  r   r!   Nc                 H  > [         TU ]  U5        [        USSS9U l        [        R
                  " [        R                  " UR                  UR                  S-  UR                  -  SS9[        R                  " UR                  5      5      U l        U R                  5         g )NFT)r:  r    r#   r   )in_channelsout_channelsrx   )r$   r%   r9  r"  r   
Sequentialr   r)   encoder_strider{   PixelShuffledecoderr@  r   s     r7   r%   #DeiTForMaskedImageModeling.__init__]  s     fdS	}}II"..#22A58K8KK
 OOF112
 	r9   rW   rX   r   r   r  r  rU   c           
         Ub  UOU R                   R                  nU R                  UUUUUUUS9nUS   n	U	SS2SS24   n	U	R                  u  pn[	        US-  5      =pU	R                  SSS5      R                  XX5      n	U R                  U	5      nSnUGb  U R                   R                  U R                   R                  -  nUR                  SUU5      nUR                  U R                   R                  S5      R                  U R                   R                  S5      R                  S5      R                  5       n[        R                  R                  XSS	9nUU-  R!                  5       UR!                  5       S
-   -  U R                   R"                  -  nU(       d  U4USS -   nUb  U4U-   $ U$ [%        UUUR&                  UR(                  S9$ )a  
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
    Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).

Examples:
```python
>>> from transformers import AutoImageProcessor, DeiTForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
>>> model = DeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224")

>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()

>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 224, 224]
```N)rX   r   r   r  r  rU   r   r   r>   r?   r#   none)	reductiongh㈵>)lossreconstructionr   r  )r   rL  r"  rF   rp   rJ   rI   rh  rz   r4   repeat_interleaver\   r   r   rK   l1_losssumr{   r   r   r  )r5   rW   rX   r   r   r  r  rU   r   rQ  r_   sequence_lengthr{   r;   r<   reconstructed_pixel_valuesmasked_im_lossrA   rb   reconstruction_lossr   s                        r7   rf   "DeiTForMaskedImageModeling.forwardn  s   L &1%<k$++B]B]))+/!5#%=  
 "!* *!QrT'24C4I4I1
\_c122)11!Q:BB:]ck &*\\/%B"&;;))T[[-C-CCD-55b$EO11$++2H2H!L""4;;#9#91=1	  #%--"7"7lr"7"s1D8==?488:PTCTUX\XcXcXpXppN02WQR[@F3A3M^%.YSYY(5!//))	
 	
r9   )rh  r"  rU  )ri   rj   rk   rl   r   r%   r   r   r'   ro   rq   rn   r   r   r   rf   rr   rs   rt   s   @r7   ra  ra  P  s    z d "  046:,0,0/3&*).R
u||,R
 "%"2"23R
 ELL)	R

 $D>R
 'tnR
 d^R
 #'R
 
u//	0R
 R
r9   ra  z
    DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
    the [CLS] token) e.g. for ImageNet.
    c                      ^  \ rS rSrS\SS4U 4S jjr\       SS\\R                     S\\R                     S\\R                     S	\\
   S
\\
   S\\
   S\
S\\\4   4S jj5       rSrU =r$ )DeiTForImageClassificationi  r   r!   Nc                 .  > [         TU ]  U5        UR                  U l        [        USS9U l        UR                  S:  a+  [
        R                  " UR                  UR                  5      O[
        R                  " 5       U l	        U R                  5         g NF)r:  r   )r$   r%   
num_labelsr9  r"  r   r   r)   Identity
classifierr@  r   s     r7   r%   #DeiTForImageClassification.__init__  ss      ++f>	 OUN_N_bcNc"))F$6$68I8IJikititiv 	r9   rW   r   labelsr   r  r  rU   c           	      t   Ub  UOU R                   R                  nU R                  UUUUUUS9nUS   n	U R                  U	SS2SSS24   5      n
SnUGb  UR	                  U
R
                  5      nU R                   R                  c  U R                  S:X  a  SU R                   l        OoU R                  S:  aN  UR                  [        R                  :X  d  UR                  [        R                  :X  a  SU R                   l        OSU R                   l        U R                   R                  S:X  aI  [        5       nU R                  S:X  a&  U" U
R                  5       UR                  5       5      nOU" X5      nOU R                   R                  S:X  a=  [        5       nU" U
R                  SU R                  5      UR                  S5      5      nO,U R                   R                  S:X  a  [!        5       nU" X5      nU(       d  U
4USS -   nUb  U4U-   $ U$ [#        UU
UR$                  UR&                  S	9$ )
a  
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
    Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
    config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
    `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

Examples:

```python
>>> from transformers import AutoImageProcessor, DeiTForImageClassification
>>> import torch
>>> from PIL import Image
>>> import requests

>>> torch.manual_seed(3)  # doctest: +IGNORE_RESULT
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here,
>>> # so the head will be randomly initialized, hence the predictions will be random
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
>>> model = DeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224")

>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: Polaroid camera, Polaroid Land camera
```Nr   r   r  r  rU   r   r   
regressionsingle_label_classificationmulti_label_classificationr>   )rm  logitsr   r  )r   rL  r"  r}  r   deviceproblem_typer{  r   r'   longrp   r
   squeezer	   rM   r   r   r   r  )r5   rW   r   r  r   r  r  rU   r   rQ  r  rm  loss_fctr   s                 r7   rf   "DeiTForImageClassification.forward  s   T &1%<k$++B]B]))/!5#%=  
 "!*Aq!9: YYv}}-F{{''/??a'/;DKK,__q(fllejj.HFLL\a\e\eLe/LDKK,/KDKK,{{''<7"9??a'#FNN$4fnn6FGD#F3D))-JJ+-B @&++b/R))-II,./Y,F)-)9TGf$EvE$!//))	
 	
r9   )r}  r"  r{  rU  )ri   rj   rk   rl   r   r%   r   r   r'   ro   rn   r   r   r   rf   rr   rs   rt   s   @r7   rx  rx    s    
z 
d 
  04,0)-,0/3&*).Y
u||,Y
 ELL)Y
 &	Y

 $D>Y
 'tnY
 d^Y
 #'Y
 
u++	,Y
 Y
r9   rx  zC
    Output type of [`DeiTForImageClassificationWithTeacher`].
    c                       \ rS rSr% SrSr\\R                     \	S'   Sr
\\R                     \	S'   Sr\\R                     \	S'   Sr\\\R                        \	S'   Sr\\\R                        \	S'   S	rg)
+DeiTForImageClassificationWithTeacherOutputi4  aF  
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
    Prediction scores as the average of the cls_logits and distillation logits.
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
    Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
    class token).
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
    Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
    distillation token).
Nr  
cls_logitsdistillation_logitsr   r  r  )ri   rj   rk   rl   rm   r  r   r'   FloatTensorr/  r  r  r   r   r  rr   r  r9   r7   r  r  4  s}    	 +/FHU&&'..2J**+27;%"3"34;8<M8E%"3"345<59Ju00129r9   r  a  
    DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of
    the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.

    .. warning::

           This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
           supported.
    c                      ^  \ rS rSrS\SS4U 4S jjr\      SS\\R                     S\\R                     S\\
   S	\\
   S
\\
   S\
S\\\4   4S jj5       rSrU =r$ )%DeiTForImageClassificationWithTeacheriM  r   r!   Nc                   > [         TU ]  U5        UR                  U l        [        USS9U l        UR                  S:  a+  [
        R                  " UR                  UR                  5      O[
        R                  " 5       U l	        UR                  S:  a+  [
        R                  " UR                  UR                  5      O[
        R                  " 5       U l
        U R                  5         g rz  )r$   r%   r{  r9  r"  r   r   r)   r|  cls_classifierdistillation_classifierr@  r   s     r7   r%   .DeiTForImageClassificationWithTeacher.__init__Y  s      ++f>	 AG@Q@QTU@UBIIf((&*;*;<[][f[f[h 	 AG@Q@QTU@UBIIf((&*;*;<[][f[f[h 	$
 	r9   rW   r   r   r  r  rU   c           	      L   Ub  UOU R                   R                  nU R                  UUUUUUS9nUS   nU R                  US S 2SS S 24   5      n	U R	                  US S 2SS S 24   5      n
X-   S-  nU(       d  XU
4USS  -   nU$ [        UU	U
UR                  UR                  S9$ )Nr  r   r   r#   )r  r  r  r   r  )r   rL  r"  r  r  r  r   r  )r5   rW   r   r   r  r  rU   r   rQ  r  r  r  r   s                r7   rf   -DeiTForImageClassificationWithTeacher.forwardj  s     &1%<k$++B]B]))/!5#%=  
 "!*((Aq)AB
"::?1aQR7;ST 2a7*=>LFM:! 3!//))
 	
r9   )r  r"  r  r{  )NNNNNF)ri   rj   rk   rl   r   r%   r   r   r'   ro   rn   r   r   r  rf   rr   rs   rt   s   @r7   r  r  M  s    z d "  04,0,0/3&*).&
u||,&
 ELL)&
 $D>	&

 'tn&
 d^&
 #'&
 
uAA	B&
 &
r9   r  )rx  r  ra  r9  r!  )r   )>rm   collections.abcr}   dataclassesr   typingr   r   r   r'   torch.utils.checkpointr   torch.nnr   r	   r
   activationsr   modeling_layersr   modeling_outputsr   r   r   r   modeling_utilsr   r   pytorch_utilsr   r   utilsr   r   r   r   configuration_deitr   
get_loggerri   r   Moduler   r-   ro   floatr   r   r   r   r   r   r   r  r!  r9  r>  ra  rx  r  r  __all__r  r9   r7   <module>r     sP     ! , ,    A A ! 9  G Q D D * 
		H	%VRYY Vr")) P %II%<<% 
% <<	%
 U\\*% % %>F		 FTRYY &$BII $Pryy "  '* 'V(
")) (
V // / /@ [
# [
 [
~  	e
!4 e
e
P g
!4 g
g
T 
:+ : :& 
9
,? 9

9
xr9   