
    <h?                     :   S SK r S SKJr  S SKJrJr  S SKrS SKrS SKJrJ	r	  SSK
JrJr  SSKJr  SSKJr  SS	KJrJrJrJr  SS
KJrJrJr  SSKJrJrJr  SSKJr  SSK J!r!J"r"J#r#J$r$J%r%J&r&J'r'J(r(J)r)  SSK*J+r+J,r,J-r-J.r.J/r/J0r0  SSK1J2r2J3r3  \Rh                  " \55      r6 " S S\"5      r7S r8S r9 " S S\	Rt                  5      r; " S S\(\	Rt                  5      r< " S S\)5      r= " S S\!5      r> " S S\$5      r? " S  S!\&5      r@ " S" S#\%5      rA " S$ S%\#5      rB " S& S'\'5      rC\ " S( S)\5      5       rD " S* S+\D5      rE " S, S-\	Rt                  5      rF " S. S/\	Rt                  5      rG " S0 S1\	Rt                  5      rH\\ " S2 S3\5      5       5       rI " S4 S5\	Rt                  5      rJ " S6 S7\	Rt                  5      rK " S8 S9\/5      rL " S: S;\05      rM " S< S=\-5      rN " S> S?\+5      rO " S@ SA\,5      rP " SB SC\.5      rQ " SD SE\Q5      rR " SF SG\Q\5      rS/ SHQrTg)I    N)	dataclass)OptionalUnion)Tensornn   )CacheDynamicCache)GenerationMixin)create_causal_mask)BaseModelOutputWithPast,BaseModelOutputWithPoolingAndCrossAttentionsCausalLMOutputWithPastModelOutput)ModuleUtilsMixinPreTrainedModelget_parameter_dtype)auto_docstringcan_return_tuplelogging)check_model_inputs   )	EsmAttentionEsmEmbeddings
EsmEncoderEsmIntermediateEsmLayer	EsmOutput	EsmPoolerEsmSelfAttentionEsmSelfOutput)LlamaAttentionLlamaDecoderLayerLlamaMLPLlamaPreTrainedModelLlamaRMSNormLlamaRotaryEmbedding   )EvollaConfigSaProtConfigc                   (   ^  \ rS rSrU 4S jrSrU =r$ )EvollaSaProtEmbeddingsA   c                 0   > [         TU ]  5         S U l        g N)super__init__position_idsselfconfig	__class__s     a/var/www/html/shao/venv/lib/python3.13/site-packages/transformers/models/evolla/modular_evolla.pyr1   EvollaSaProtEmbeddings.__init__B   s         )r2   )__name__
__module____qualname____firstlineno__r1   __static_attributes____classcell__r6   s   @r7   r,   r,   A   s    ! !r9   r,   c                 V    U R                  SSS9u  p[        R                  " U* U4SS9$ )Nr   dim)chunktorchcat)xx1x2s      r7   rotate_half_esmrK   H   s-    WWQBWFB99rc2YB''r9   c                     US S 2S S 2S U R                   S   2S S 24   nUS S 2S S 2S U R                   S   2S S 24   nX-  [        U 5      U-  -   $ )N)shaperK   )rH   cossins      r7   apply_rotary_pos_emb_esmrQ   M   sW    
aMaggbkM1$
%C
aMaggbkM1$
%CG*S011r9   c                      ^  \ rS rSrSrS\4U 4S jjrSS jrS\R                  S\R                  S\
\R                  \R                  4   4S	 jrS
rU =r$ )EvollaSaProtRotaryEmbeddingT   z
Rotary position embeddings based on those in
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
matrices which depend on their relative positions.
rD   c           	         > [         TU ]  5         SS[        R                  " SUS[        R                  S9R                  5       U-  -  -  nUnU R                  SU5        S U l        S U l        S U l	        g )N      ?i'  r   r   dtypeinv_freq)
r0   r1   rF   arangeint64floatregister_buffer_seq_len_cached_cos_cached_sin_cached)r4   rD   rY   r6   s      r7   r1   $EvollaSaProtRotaryEmbedding.__init__[   sl    %ELLC%++$N$T$T$VY\$\]^Z2#r9   c                 j   UR                   U   nX0R                  :w  d$  U R                  R                  UR                  :w  a  X0l        [        R
                  " UR                   U   UR                  S9R                  U R                  5      n[        R                  " X@R                  5      n[        R                  " XU4SS9R                  UR                  5      nUR                  5       S S S S 2S S 24   U l        UR                  5       S S S S 2S S 24   U l        U R                  U R                  4$ )NdevicerB   rC   )rN   r^   r_   rd   rF   rZ   type_asrY   outerrG   torO   rP   r`   )r4   rH   seq_dimensionseq_lentfreqsembs          r7   _update_cos_sin_tables2EvollaSaProtRotaryEmbedding._update_cos_sin_tablesf   s    ''-( ***d.>.>.E.E.Q#* QWW]3AHHEMMdmm\AKK==1E))UN366qxx@C"wwytQ)9:D"wwytQ)9:D!1!111r9   qkreturnc                     U R                  USS9u  U l        U l        [        XR                  U R                  5      [        X R                  U R                  5      4$ )NrM   )rh   )rm   r_   r`   rQ   )r4   ro   rp   s      r7   forward#EvollaSaProtRotaryEmbedding.forwardv   s[    -1-H-HZ\-H-]*$* %Q(8(8$:J:JK$Q(8(8$:J:JK
 	
r9   )r_   r^   r`   )r   )r:   r;   r<   r=   __doc__intr1   rm   rF   r   tuplers   r>   r?   r@   s   @r7   rS   rS   T   sR    	 C 	 2 
 
%,, 
5u||A[;\ 
 
r9   rS   c                       \ rS rSrSS jrSrg)EvollaSaProtSelfAttention   Nc                    [         R                  R                  5         Xl        UR                  UR
                  -  S:w  a7  [        US5      (       d&  [        SUR                   SUR
                   S35      eUR
                  U l        [        UR                  UR
                  -  5      U l	        U R
                  U R                  -  U l
        [         R                  " UR                  U R                  5      U l        [         R                  " UR                  U R                  5      U l        [         R                  " UR                  U R                  5      U l        [         R                  " UR                   5      U l        U=(       d    [%        USS5      U l        S U l        U R&                  S:X  d  U R&                  S	:X  aH  UR*                  U l        [         R,                  " S
UR*                  -  S-
  U R                  5      U l        O(U R&                  S:X  a  [1        U R                  S9U l        UR2                  U l        X0l        g )Nr   embedding_sizezThe hidden size (z6) is not a multiple of the number of attention heads ()position_embedding_typeabsoluterelative_keyrelative_key_queryr   r(   rotaryrC   )r   Moduler1   r5   hidden_sizenum_attention_headshasattr
ValueErrorrv   attention_head_sizeall_head_sizeLinearquerykeyvalueDropoutattention_probs_dropout_probdropoutgetattrr~   rotary_embeddingsmax_position_embeddings	Embeddingdistance_embeddingrS   
is_decoder	layer_idx)r4   r5   r~   r   s       r7   r1   "EvollaSaProtSelfAttention.__init__   s   
		 : ::a?PVXhHiHi#F$6$6#7 8 445Q8 
 $*#=#= #&v'9'9F<V<V'V#W !558P8PPYYv1143E3EF
99V//1C1CDYYv1143E3EF
zz&"E"EF'> (
'-zC
$ "&''>9T=Y=Y]q=q+1+I+ID(&(ll1v7U7U3UXY3Y[_[s[s&tD#))X5%@TE]E]%^D" ++"r9   )r   r   r5   r   r   r   r   r   r   r   r~   r   r   r   NN)r:   r;   r<   r=   r1   r>    r9   r7   ry   ry      s    #r9   ry   c                       \ rS rSrSrg)EvollaSaProtSelfOutput   r   Nr:   r;   r<   r=   r>   r   r9   r7   r   r          r9   r   c                       \ rS rSrSrg)EvollaSaProtAttention   r   Nr   r   r9   r7   r   r      r   r9   r   c                       \ rS rSrSrg)EvollaSaProtIntermediate   r   Nr   r   r9   r7   r   r      r   r9   r   c                       \ rS rSrSrg)EvollaSaProtOutput   r   Nr   r   r9   r7   r   r      r   r9   r   c                       \ rS rSrSrg)EvollaSaProtLayer   r   Nr   r   r9   r7   r   r      r   r9   r   c                       \ rS rSrSrg)EvollaSaProtEncoder   r   Nr   r   r9   r7   r   r      r   r9   r   c                       \ rS rSrSrg)EvollaSaProtPooler   r   Nr   r   r9   r7   r   r      r   r9   r   c                   0    \ rS rSr% \\S'   S/rSrS rSr	g)EvollaSaProtPreTrainedModel   r5   r   Tc                    U R                   R                  n[        U[        R                  5      (       aW  UR
                  R                  R                  SUS9  UR                  b%  UR                  R                  R                  5         gg[        U[        R                  5      (       ad  UR
                  R                  R                  SUS9  UR                  b2  UR
                  R                  UR                     R                  5         gg[        U[        R                  5      (       aJ  UR                  R                  R                  5         UR
                  R                  R                  S5        gg)zInitialize the weights        meanstdNrV   )r5   initializer_range
isinstancer   r   weightdatanormal_biaszero_r   padding_idx	LayerNormfill_r4   moduler   s      r7   _init_weights)EvollaSaProtPreTrainedModel._init_weights   s   kk++fbii((MM&&CS&9{{&  &&( '--MM&&CS&9!!-""6#5#56<<> .--KK""$MM$$S) .r9   r   N)
r:   r;   r<   r=   r*   __annotations___no_split_modules_supports_flash_attnr   r>   r   r9   r7   r   r      s    ,-*r9   r   c                     ^  \ rS rSrS\4U 4S jjrS rS rS r\	 SS\
\R                     S\
\R                     S	\\\R                     \4   4S
 jj5       r SS\S\\   S\R$                  S\R&                  S	\4
S jjrSrU =r$ )EvollaSaProtProteinEncoder   r5   c                 d   > [         TU ]  U5        [        U5      U l        [	        U5      U l        g r/   )r0   r1   r,   
embeddingsr   encoderr3   s     r7   r1   #EvollaSaProtProteinEncoder.__init__   s(     08*62r9   c                 .    U R                   R                  $ r/   r   word_embeddingsr4   s    r7   get_input_embeddings/EvollaSaProtProteinEncoder.get_input_embeddings   s    ...r9   c                 $    XR                   l        g r/   r   r4   r   s     r7   set_input_embeddings/EvollaSaProtProteinEncoder.set_input_embeddings   s    */'r9   c                     UR                  5        H7  u  p#U R                  R                  U   R                  R	                  U5        M9     g)z
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
N)itemsr   layer	attentionprune_heads)r4   heads_to_pruner   headss       r7   _prune_heads'EvollaSaProtProteinEncoder._prune_heads   s<    
 +002LELLu%//;;EB 3r9   	input_idsattention_maskrq   c                 0   UR                  5       nUu  pEUR                  nUc  [        R                  " XE4US9nU R	                  XS9nU R                  X#5      nU R                  XxS9n	U	S   n
[        U
U	R                  U	R                  U	R                  S9$ )Nrc   r   r   )r   r   )last_hidden_statehidden_states
attentionscross_attentions)sizerd   rF   onesr   get_extended_attention_maskr   r   r   r   r   )r4   r   r   input_shape
batch_size
seq_lengthrd   inputs_embedsextended_attention_maskencoder_outputssequence_outputs              r7   rs   "EvollaSaProtProteinEncoder.forward   s      nn&!,
!!!"ZZ*)A6RN)["&"B"B>"_,,},])!,;-)77&11,==	
 	
r9   r   rd   rX   c                 P   Uc  [        U 5      nUR                  5       S:X  a  U R                  R                  (       d  Ub  [        R
                  " S[        5        UR                  5       S:X  a  USS2SSS2SS24   nOqUR                  5       S:X  aA  U R                  R                  (       a  [        R                  " X!U5      nO*USS2SSSS24   nO[        SU SUR                   S35      eUR                  US9nS	U-
  [        R                  " U5      R                  -  nU$ )
a  
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.

Arguments:
    attention_mask (`torch.Tensor`):
        Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
    input_shape (`Tuple[int]`):
        The shape of the input to the model.

Returns:
    `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
Nr   zNThe `device` argument is deprecated and will be removed in v5 of Transformers.r   z!Wrong shape for input_ids (shape z) or attention_mask (shape r}   rW   rV   )r   rD   r5   r   warningswarnFutureWarningr   *create_extended_attention_mask_for_decoderr   rN   rg   rF   finfomin)r4   r   r   rd   rX   r   s         r7   r   6EvollaSaProtProteinEncoder.get_extended_attention_mask   s     ='-E""$)dkk.D.D!dfs
 1$&4Qa]&C#!Q& {{%%*:*e*e+' +9D$9I*J'3K=@[\j\p\p[qqrs  #:"<"<5"<"I#&)@#@EKKPUDVDZDZ"Z&&r9   )r   r   r/   r   )r:   r;   r<   r=   r*   r1   r   r   r   r   r   rF   r   r   rw   r   rs   rv   rd   r\   r   r>   r?   r@   s   @r7   r   r      s    3| 3
/0C  26
ELL)
 !.
 
uU\\"$PP	Q	
 
2 rv2'$2'38:2'GL||2'chcncn2'	2' 2'r9   r   c                   2   ^  \ rS rSrSU 4S jjrS rSrU =r$ )!EvollaSequenceCompressorAttentioni5  c                 X  > [         TU ]  5         US-  U l        X0l        X#-  n[        R
                  " U5      U l        [        R
                  " U5      U l        [        R                  " XSS9U l	        [        R                  " XS-  SS9U l
        [        R                  " XASS9U l        g )N      Fr   r   )r0   r1   scaler   r   r   
norm_medianorm_latentsr   to_qto_kvto_out)r4   rD   dim_headr   	inner_dimr6   s        r7   r1   *EvollaSequenceCompressorAttention.__init__6  s    t^

$	,,s+LL-IIc59	YYsM>
ii	U;r9   c                 &   U R                  U5      nU R                  U5      nU R                  nU R                  U5      n[        R
                  " X4SS9nU R                  U5      R                  SSS9u  pxUR                  UR                  S5      UR                  S5      US5      R                  SSSS5      nUR                  UR                  S5      UR                  S5      US5      R                  SSSS5      nUR                  UR                  S5      UR                  S5      US5      R                  SSSS5      nXPR                  -  n[        R                  " XWR                  SS5      5      n	XR                  SSS	9R                  5       -
  n	U	R                   u  pp[        R"                  " X5      R%                  UR&                  5      nUS
S
2S
S
S
S
24   nUS
S
S
2S
S
2S
4   nUU-  nU	R)                  SU-
  R+                  5       S5      n	U	R-                  SS9n[        R                  " UU5      nUR                  SSSS5      nUR/                  UR                  S5      UR                  S5      S5      nU R1                  U5      $ )z
Args:
    x (torch.Tensor): image features
        shape (b, n1, D)
    latent (torch.Tensor): latent features
        shape (b, n2, D);  n2: num of latent tokens
rM   rC   r   rB   r   r(   r   TrD   keepdimNg     )r  r  r   r  rF   rG   r	  rE   viewr   permuter  matmul	transposeamaxdetachrN   r   rg   rd   masked_fillboolsoftmaxreshaper
  )r4   rH   latentsmaskhro   kv_inputrp   vsimbsnhskdokdr   mask_expones_expattnouts                      r7   rs   )EvollaSequenceCompressorAttention.forwardC  s2    OOA##G,JJIIg99a\r2zz(#))2 * 
 FF166!9affQiB/771aCFF166!9affQiB/771aCFF166!9affQiB/771aC

N ll1kk"b12HHTH299;;99zz""%%dkk24q()aD()("ooq4xoo/6{{r{"ll4#kk!Q1% kk#((1+sxx{B7{{3r9   )r   r  r  r  r	  r
  r  )@      r:   r;   r<   r=   r1   rs   r>   r?   r@   s   @r7   r  r  5  s    <)  ) r9   r  c                   2   ^  \ rS rSrSU 4S jjrS rSrU =r$ )EvollaFeedForwardio  c                   > [         TU ]  5         [        X-  5      n[        R                  " U5      U l        [        R                  " XSS9U l        [        R                  " 5       U l	        [        R                  " X1SS9U l
        g NFr  )r0   r1   rv   r   r   normr   fc1GELU
activationfc2)r4   rD   multr  r6   s       r7   r1   EvollaFeedForward.__init__p  sZ    
O	LL%	99S%8'')99Y%8r9   c           	      ~    U R                  U R                  U R                  U R                  U5      5      5      5      $ r/   )r5  r4  r2  r1  )r4   rH   s     r7   rs   EvollaFeedForward.forwardy  s+    xx1(>?@@r9   )r4  r2  r5  r1  )   r,  r@   s   @r7   r.  r.  o  s    9A Ar9   r.  c                   6   ^  \ rS rSrS\4U 4S jjrS rSrU =r$ )!EvollaSequenceCompressorResampleri}  r5   c                   > [         TU ]  5         UR                  R                  nUR                  U l        [        R                  " [        R                  " U R
                  U5      SS9U l
        [        R                  " / 5      U l        [        UR                  5       Ha  nU R                  R                  [        R                  " [!        X!R"                  UR$                  S9['        X!R(                  S9/5      5        Mc     [        R*                  " UR                  5      U l        [        R.                  " X!R                  5      U l        g )NT)requires_grad)rD   r  r   )rD   r6  )r0   r1   protein_encoder_configr   resampler_num_latentsnum_latentsr   	ParameterrF   randnr  
ModuleListlayersrangeresampler_depthappendr  resampler_dim_headresampler_headsr.  resampler_ff_multr   r1  r   protein_projector)r4   r5   protein_repr_dim_r6   s       r7   r1   *EvollaSequenceCompressorResampler.__init__~  s    !88DD!77||EKK0@0@BR$ScghmmB'v--.AKK9 0;T;T\b\r\r *.>E]E]^		 / LL!3!34	!#+;=O=O!Pr9   c                 d   UR                   S   nUR                   u  pE[        R                  " X@R                  5      R	                  UR
                  5      n[        R                  " X&4SS9n[        R                  " U5      R	                  U R                  R
                  5      nU R                  S    UR                  SSS5      -  nUR	                  UR                  5      nU R                   H  u  pU	" XU5      U-   nU
" U5      U-   nM     U R                  U5      nU R                  U5      $ )Nr   r(   rC   rB   )rN   rF   r   rA  rg   rd   rG   r  r  rX   rE  rL  r1  )r4   embedsr  br!  rN  latent_maskr   r  r'  fftransformed_features               r7   rs   )EvollaSequenceCompressorResampler.forward  s    LLO

jj%5%5699$++Fyy$,!4 zz!} 3 34,,t$tyyQ'::**V\\*HD6D1G;GkG+G $ #44W=yy,--r9   )r  rE  r1  rA  rL  )	r:   r;   r<   r=   r)   r1   rs   r>   r?   r@   s   @r7   r<  r<  }  s    Q| Q*. .r9   r<  c                       \ rS rSr% Sr\R                  \S'   Sr\	\R                     \S'   Sr
\	\\R                  S4      \S'   Sr\	\\R                  S4      \S'   Srg)	EvollaProteinEncoderModelOutputi  Nsequence_compressor_outputr   .r   r   r   )r:   r;   r<   r=   rY  rF   FloatTensorr   r   r   r   rw   r   r>   r   r9   r7   rX  rX    si     59 1 1859x 1 129=AM8E%"3"3S"89:A:>Ju00#567>r9   rX  c                   t   ^  \ rS rSrS\4U 4S jjr\S\R                  S\R                  4S j5       r
SrU =r$ )EvollaProteinEncoderi  r5   c                 n   > [         TU ]  5         [        UR                  S9U l        [        US9U l        g )Nr5   )r0   r1   r   r?  modelr<  sequence_compressor_resamplerr3   s     r7   r1   EvollaProteinEncoder.__init__  s.    /v7T7TU
-NV\-]*r9   r   r   c                     U R                  XS9nUR                  nU R                  XR5      n[        UUR                  S9$ )Nr   )rY  r   )r_  r   r`  rX  )r4   r   r   kwargsprotein_outputprotein_embedssequence_reprs          r7   rs   EvollaProteinEncoder.forward  sF    iW'99::>Z.'4,>>
 	
r9   )r_  r`  )r:   r;   r<   r=   r)   r1   r   rF   
LongTensorrZ  rs   r>   r?   r@   s   @r7   r\  r\    s?    ^| ^
 
!1!1 
5CTCT 
 
r9   r\  c                   r   ^  \ rS rSr   S	S\\   S\\   S\\   4U 4S jjjrS r       S
S jrSr	U =r
$ )#EvollaSequenceAlignerCrossAttentioni  protein_encoder_dimstructure_encoder_dimmsa_encoder_dimc                   > [         TU ]  5         UR                  U l        UR                  U l        U R                  S-  U l        [        U R                  U R                  -  5      U l        U R                  U R                  -  U l        UR                  nUR                  nUR                  n[        R                  " U R                  U R                  5      U l        UbK  [        R                  " X R                  5      U l        [        R                  " X R                  5      U l        OS U l        S U l        UbK  [        R                  " X0R                  5      U l        [        R                  " X0R                  5      U l        OS U l        S U l        UbK  [        R                  " X@R                  5      U l        [        R                  " X@R                  5      U l        OS U l        S U l        [)        U R                  5      U l        [        R,                  " U5      U l        [        R                  " U R                  U R                  US9U l        [3        U R                  U5      U l        [        R6                  " [8        R:                  " S/5      5      U l        [        R6                  " [8        R:                  " S/5      5      U l        g )Nr  r  r   ) r0   r1   r   r   r  rv   r   r   $aligner_attention_probs_dropout_probaligner_enable_biasaligner_ffn_multr   r   r   key_proteinvalue_proteinkey_structurevalue_structurekey_msa	value_msaEvollaRMSNormattention_normr   r   out_projr.  rT  rB  rF   tensorgate_attentiongate_ffw)	r4   r5   rk  rl  rm  r   enable_biasffn_multr6   s	           r7   r1   ,EvollaSequenceAlignerCrossAttention.__init__  s    	!--#)#=#= --t3
#&t'7'7$:R:R'R#S !558P8PP'-'R'R$00**YYt//1C1CD
*!yy)<>P>PQD!#+>@R@R!SD#D!%D ,!#+@BTBT!UD#%99-BDVDV#WD !%D#'D &99_6H6HIDLYY8J8JKDNDL!DN+D,<,<=zz">?		$"2"2D4D4D;W#D$4$4h? ll5<<+>?U\\3%%89r9   c	                    XgU/n	U	 V
s/ sH	  oc  M  U
PM     n	n
U	(       d  [        S5      e[        R                  " U	SS9n	U R                  U5      nU R	                  U5      nU R
                  bA  U R                  b4  UR                  U5      nU R                  U5      nU R                  U5      nOSnSnU R                  bA  U R                  b4  UR                  U5      nU R                  U5      nU R                  U5      nOSnSnU R                  bA  U R                  b4  UR                  U5      nU R                  U5      nU R                  U5      nOSnSnXU/nU V
s/ sH	  oc  M  U
PM     nn
[        R                  " USS9nXU/nU V
s/ sH	  oc  M  U
PM     nn
[        R                  " USS9nUR                  5       SS U R                  U R                  4-   nUR                  " U6 R!                  SSSS5      nUR                  5       SS U R                  U R                  4-   nUR                  " U6 R!                  SSSS5      nUR                  5       SS U R                  U R                  4-   nUR                  " U6 R!                  SSSS5      nXR"                  -  nUcN  [        R$                  " UR                  S5      UR                  S5      5      R                  UR&                  5      nUSS2SSS2S4   U	SS2SSSS24   -  n[        R(                  " UUR+                  SS	5      5      nUUR-                  SS
S9R/                  5       -
  nUR1                  SU-
  R3                  5       [        R4                  " UR6                  5      R8                  5      n[:        R<                  " SS9" U5      n[        R(                  " UU5      nUR!                  SSSS5      R?                  5       nUR                  5       SS	 U R@                  4-   nUR                  " U6 nU RC                  U5      nU$ s  sn
f s  sn
f s  sn
f )z
query_states: text
key_value_states: protein
query_states: [bs, query_seq_len, dim]
key_value_states: [bs, kv_seq_len, dim]
query_attn_mask: [bs, query_seq_len]
kv_attn_mask: [bs, kv_seq_len]
Nz=At least one modality should be provided for cross attention.r(   rC   rB   r   r   r   rM   Tr  )"r   rF   rG   ry  r   rr  rs  rg   rt  ru  rv  rw  r   r   r   r  r  r  r   rd   r  r  r  r  r  r  r   rX   r   r   Softmax
contiguousr   rz  )r4   query_statesprotein_key_value_statesstructure_key_value_statesmsa_key_value_statesquery_attn_maskprotein_kv_attn_maskstructure_kv_attn_maskmsa_kv_attn_maskkv_attn_maskrN  query_layerkey_layer_proteinvalue_layer_proteinkey_layer_structurevalue_layer_structurekey_layer_msavalue_layer_msa	key_layervalue_layernew_query_layer_shapenew_key_layer_shapenew_value_layer_shaper   attn_weightsattention_scoresattention_probscontext_layernew_context_layer_shapes                                r7   cross_attention3EvollaSequenceAlignerCrossAttention.cross_attention  sK   * -FVW#/A<a<A\]]yy15)),7 jj-'D,>,>,J'?'B'B<'P$ $ 0 01I J"&"4"45M"N $"&)d.B.B.N)C)F)F|)T&"&"4"45O"P$($8$89S$T!"&$(!<<#(B#7#:#:<#H  LL)=>M"nn-ABO M"O&]K	 );	1Q		;IIiQ/	*?S"-?+Qq+?ii3 + 0 0 23B 7$$$$;
 !
 "&&(=>FFq!QPQR'nn.s3$$$$7
 
 NN$78@@Aq!L	 + 0 0 23B 7$$$$;
 !
 "&&(=>FFq!QPQR!JJ. "#jj):):1)=|?P?PQR?STWWXdXkXklO(D!T)9:\!TSWYZJZ=[[||K1D1DR1LM#l&7&7B&7&M&T&T&VV'33%%'\5G5G)H)L)L
 **,-=> _kB%--aAq9DDF"/"4"4"6s";t?Q?Q>S"S%**,CDm4q BL < @s"   P?P?!Q*QQ	Q	c                 z   Ubv  UR                   u  pnUcc  [        R                  " X5      R                  U	R                  5      U	R                  X4S9R                  -  R                  UR                  5      nOS nUby  UR                   u  nnnUce  [        R                  " UU5      R                  U	R                  5      U
R                  UU4S9R                  -  R                  UR                  5      nOS nUby  UR                   u  nnnUce  [        R                  " UU5      R                  U	R                  5      UR                  UU4S9R                  -  R                  UR                  5      nOS nUnUb  UR                  5       (       d0  Ub  UR                  5       (       d  Ub  UR                  5       (       ay  UnU R                  UUUUUUUUS9n[        R                  " U R                  5      U-  nUU-   nUnU R                  U5      [        R                  " U R                  5      -  nUU-   nU$ )N)r   )r  r  r  r  r  r  r  r  )rN   rF   r   rg   rd   expandTanyr  tanhr|  rT  r}  )r4   r  protein_kv_statesstructure_kv_statesmsa_kv_statesr  r  r  r  protein_batch_maskstructure_batch_maskmsa_batch_maskpast_key_valuer!  protein_kv_seq_lenrD   structure_kv_seq_lenmsa_kv_seq_lenr   residuals                       r7   rs   +EvollaSequenceAlignerCrossAttention.forwardf  sP    (*;*A*A'BC#+JJr699:L:S:ST(//6H5M/NPPQ"&--. %
 $( *,?,E,E)B$c%-JJr#78;;<N<U<UV*118Lb7Q1RTTU"(//0 '
 &*"$&3&9&9#B'JJr>2556H6O6OP$++."1E+FHHI"]))* !
  $$ */C/G/G/I/I#/4J4N4N4P4P).>.B.B.D.D$H 00*):+>%2 /%9'=!1 1 	M "JJt':':;mKM$}4M$H GGM2UZZ5NNM$}4Mr9   )r   r   ry  r   rT  r|  r}  r   rv  rr  rt  r   rz  r   r  rw  rs  ru  )NNNNNNNNNN)r:   r;   r<   r=   r   rv   r1   r  rs   r>   r?   r@   s   @r7   rj  rj    sm     .2/3)-1: &c]1:  (}	1:
 "#1: 1:fnn "#!G Gr9   rj  c                       \ rS rSrSrg)rx  i  r   Nr   r   r9   r7   rx  rx    r   r9   rx  c                       \ rS rSrSrg)EvollaRotaryEmbeddingi  r   Nr   r   r9   r7   r  r    r   r9   r  c                       \ rS rSrSrg)	EvollaMLPi  r   Nr   r   r9   r7   r  r    r   r9   r  c                       \ rS rSrSrg)EvollaAttentioni  r   Nr   r   r9   r7   r  r    r   r9   r  c                     ^  \ rS rSrS\S\4U 4S jjr            SS\R                  S\	\R                  \R                  4   S\
\R                     S\
\R                     S	\
\   S
\
\   S\
\R                     S\
\R                     S\
\R                     S\
\R                     S\
\R                     S\
\R                     S\
\R                     S\
\R                     4S jjrSrU =r$ )EvollaDecoderLayeri  r5   r   c                    > [         TU ]  X5        US-   [        UR                  UR                  -  S5      -  S:X  a  [        UUR                  S9U l        g g )Nr(   r   )rk  )r0   r1   maxnum_hidden_layersaligner_num_add_layersrj  r   adapterr4   r5   r   r6   s      r7   r1   EvollaDecoderLayer.__init__  sY    +MS!9!9V=Z=Z!Z\]^^bcc>$*$6$6DL dr9   r   position_embeddingsr   r2   r  	use_cachecache_positionr  r  r  r  r  r  r  c                    UnU R                  U5      nU R                  " SUUUUUUUS.UD6u  nnUU-   nUnU R                  U5      nU R                  U5      nUU-   n[	        U S5      (       a  U R                  UUU	U
UUUUS9nU$ )N)r   r   r2   r  r  r  r  r  )r  r  r  r  r  r  r  r  r   )input_layernorm	self_attnpost_attention_layernormmlpr   r  )r4   r   r  r   r2   r  r  r  r  r  r  r  r  r  r  rc  r  rN  s                     r7   rs   EvollaDecoderLayer.forward  s    $ !,,];  >> 	
')%)) 3	
 	
q !=0 !55mD/ =04## LL*"3$7+ /#5%9- ) 	M r9   )r  )NNNFNNNNNNNN)r:   r;   r<   r=   r)   rv   r1   rF   r   rw   r   rh  r	   r  rs   r>   r?   r@   s   @r7   r  r    sL   |   2637*.$)59486:04597;15265||5 #5<<#=>5 !.	5
 u//05 !5 D>5 !!1!125 $ELL15 &ell35  -5 %U\\25 'u||45 !.5 "%,,/5 5r9   r  c                   &    \ rS rSrSr/ SQrS rSrg)EvollaPreTrainedModeli  F)r  r<  rj  c                    U R                   R                  n[        R                  " U5        [	        U[
        5      (       ad  UR                  R                  5         UR                  R                  5         UR                  R                  R                  R                  S5        g [	        U[        5      (       a%  UR                  R                  R                  SUS9  g g )NrV   r   r   )r5   r   r%   r   r   rj  r|  r   r}  ry  r   r   r   r<  r  r   r   s      r7   r   #EvollaPreTrainedModel._init_weights	  s    kk++**62fABB!!'')OO!!#!!((--33C8 ABBNN''Sc': Cr9   r   N)r:   r;   r<   r=   _supports_attention_backendr   r   r>   r   r9   r7   r  r    s    "';r9   r  c            !         ^  \ rS rSrS\4U 4S jjrS rS r\\	             SS\
R                  S\\
R                     S\\
R                     S	\\   S
\\
R                     S\\   S\\
R                     S\\
R                     S\\
R                     S\\
R                     S\\
R                     S\\
R                     S\\
R                     S\\\4   4S jj5       5       rSrU =r$ )EvollaModeli  r5   c           
      6  > [         TU ]  U5        UR                  U l        UR                  U l        [
        R                  " U R                  UR                  U R                  5      U l        [        US9U l
        [
        R                  " [        UR                  5       Vs/ sH  n[        UUS9PM     sn5      U l        [!        UR                  UR"                  S9U l        ['        US9U l        [+        USS5      U l        U R/                  5         g s  snf )Nr^  )r5   r   )epsgradient_checkpointingF)r0   r1   pad_token_idr   
vocab_sizer   r   r   embed_tokensr\  protein_encoderrD  rF  r  r  rE  rx  rms_norm_epsr1  r  
rotary_embr   r  	post_initr  s      r7   r1   EvollaModel.__init__  s     !.. ++LL&:L:LdN^N^_36Bmm "'v'?'?!@
 "AI	 #!' "A
 "&"4"4&:M:MN	/v>&-f6NPU&V#s   #Dc                     U R                   $ r/   r  r   s    r7   r    EvollaModel.get_input_embeddings*  s       r9   c                     Xl         g r/   r  r   s     r7   r    EvollaModel.set_input_embeddings-  s    !r9   r   r   r2   past_key_valuesr   r  r  protein_input_idsprotein_attention_maskstructure_feats	msa_featsr  r  rq   c                    USL USL-  (       a  [        S5      eUc  U R                  U5      nU(       a  Uc
  [        5       nUcD  Ub  UR                  5       OSn[        R
                  " XUR                  S   -   UR                  S9nUc  UR                  S5      nSnSnUbO  U	bL  U R                  UU	S9nUR                  n[        R                  " S/UR                  S   -  UR                  S9n[        U R                  UUUUS9nUnU R                  UU5      nU R                   H  nU" U4UUUUUUUU
UUUUUS	.UD6nM     U R!                  U5      n[#        UUS
9nU$ )a  
protein_input_ids (torch.LongTensor):
    The input IDs for the protein sequence in structure-aware tokens. Should be of shape `(batch_size, protein_seq_length)` and type `torch.LongTensor`.
protein_attention_mask (torch.Tensor):
    The attention mask for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.Tensor`.
structure_feats (torch.FloatTensor):
    The input IDs for purely structure-based features. Should be of shape `(batch_size, structure_seq_length, structure_feat_dim)` and type `torch.FloatTensor`. Dummy input for now.
msa_feats (torch.FloatTensor):
    The input IDs for purely MSA-based features. Should be of shape `(batch_size, msa_seq_length, msa_feat_dim)` and type `torch.FloatTensor`. Dummy input for now.
structure_batch_mask (torch.Tensor):
    The batch mask to decide which protein sequences are purely structure-based. Should be of shape `(batch_size)` and type `torch.Tensor`. Should be paired with `structure_feats`. Dummpy input for now.
msa_batch_mask (torch.Tensor):
    The batch mask to decide which protein sequences are purely MSA-based. Should be of shape `(batch_size)` and type `torch.Tensor`. Should be paired with `msa_feats`. Dummpy input for now.
Nz:You must specify exactly one of input_ids or inputs_embedsr   r(   rc   r   T)r5   input_embedsr   r  r  )r   r2   r  r  r  r  r  r  r  r  r  r  r  )r   r  )r   r  r
   get_seq_lengthrF   rZ   rN   rd   	unsqueezer  rY  r{  r   r5   r  rE  r1  r   )r4   r   r   r2   r  r   r  r  r  r  r  r  r  r  rc  past_seen_tokensprotein_featsr  protein_outputscausal_maskr   r  decoder_layeroutputs                           r7   rs   EvollaModel.forward0  s   B -t";<YZZ  --i8M0*nO!CRC^==?de"\\ ]5H5H5K"KTaThThN )33A6L!(-C-O"22+5 3 O ,FFM!&tf7H7N7Nq7Q.QZkZrZr!s(;;&))+
 & #oom\J![[M)*).#-$7"/$3'#5%9- . M )& 		-0(++
 r9   )r  r  rE  r1  r   r  r  r  )NNNNNNNNNNNNN)r:   r;   r<   r=   r)   r1   r   r   r   r   rF   rh  r   r   r	   rZ  r  r   rw   r   rs   r>   r?   r@   s   @r7   r  r    sw   | *!"  '+1537+/59$(598<9=7;157;15b##b !.b u//0	b
 "%b   1 12b D>b !!1!12b $E$4$45b !) 6b "%"3"34b E--.b 'u||4b !.b  
u--	.!b  br9   r  c                     ^  \ rS rSrU 4S jrS rS r\\       SS\	R                  S\\	R                     S\\	R                     S\\	R                     S	\	R                  S
\\	R                     S\\   4S jj5       5       rSrU =r$ )EvollaForProteinText2Texti  c                    > [         TU ]  U5        [        U5      U l        UR                  U l        [
        R                  " UR                  U R                  SS9U l        U R                  5         g r0  )
r0   r1   r  r_  r  r   r   r   lm_headr  r3   s     r7   r1   "EvollaForProteinText2Text.__init__  sQ      (
 ++yy!3!3T__5Qr9   c                 6    U R                   R                  5       $ r/   )r_  r   r   s    r7   r   .EvollaForProteinText2Text.get_input_embeddings  s    zz..00r9   c                 8    U R                   R                  U5      $ r/   )r_  r   r   s     r7   r   .EvollaForProteinText2Text.set_input_embeddings  s    zz..u55r9   r   r   r   labelsr  r  r  c           
         U R                   " SUUUUUUS.UD6n	U	S   n
U R                  U
5      nSnUb  U R                  " SXU R                  S.UD6n[	        UUU	R
                  U	R                  U	R                  S9nU$ )a|  
protein_input_ids (torch.LongTensor):
    The input IDs for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.LongTensor`.
protein_attention_mask (torch.Tensor):
    The attention mask for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.Tensor`.

Example:

```python
>>> from transformers import EvollaProcessor, EvollaForProteinText2Text
>>> model = EvollaForProteinText2Text.from_pretrained("westlake/Evolla-10B-hf")
>>> processor = EvollaProcessor.from_pretrained("westlake/Evolla-10B-hf")

>>> protein_information = {
    "aa_seq": "your amino acid sequence",
    "foldseek": "your foldseek sequence",
}
>>> question = "What is the function of this protein?"
>>> message = [
    {"role": "system", "content": "You are an AI expert that can answer any questions about protein."},
    {"role": "user", "content": question},
]

>>> inputs = processor(proteins=[protein_information], messages_list=[message], return_tensors="pt", padding="longest")
>>> outputs = model.generate(**inputs)

>>> print(processor.batch_decode(outputs, skip_special_tokens=True))
```)r   r   r   r  r  r  r   N)logitsr  r  )lossr  r  r   r   r   )r_  r  loss_functionr  r   r  r   r   )r4   r   r   r   r  r  r  r  rc  outputsr   r  r  
lm_outputss                 r7   rs   !EvollaForProteinText2Text.forward  s    T ** 
)'/#9
 
  
m,%%iVtibhiD+#33!//))

 r9   )r  r_  r  r  )r:   r;   r<   r=   r1   r   r   r   r   rF   rh  r   r   rZ  r  rs   r>   r?   r@   s   @r7   r  r    s    16  '+1559-1.29=$(?##? !.?   1 12	?
 ))*? !++? !) 6? D>?  ?r9   r  )r  r  r  )Ur   dataclassesr   typingr   r   rF   torch.utils.checkpointr   r   cache_utilsr	   r
   
generationr   masking_utilsr   modeling_outputsr   r   r   r   modeling_utilsr   r   r   utilsr   r   r   utils.genericr   esm.modeling_esmr   r   r   r   r   r   r   r    r!   llama.modeling_llamar"   r#   r$   r%   r&   r'   configuration_evollar)   r*   
get_loggerr:   loggerr,   rK   rQ   r   rS   ry   r   r   r   r   r   r   r   r   r   r  r.  r<  rX  r\  rj  rx  r  r  r  r  r  r  r  __all__r   r9   r7   <module>r     s     ! "    . ) /  U T 
 0
 
 
  = 
		H	%!] !(
2(
")) (
V# 0")) #D	] 		L 		 		 		 		* 		 	 */ * **_'!< _'D7 		 7 tA		 A'.		 '.T ?k ?  ?
299 
$k")) k\	L 		0 		 		n 	>* >B;0 ;&@' @FP 5 Pf Pr9   