
    <hr                     X   S SK JrJr  S SKrSSKJr  SSKJr  SSKJ	r	  SSK
Jr  SSKJr  SS	KJrJr  S
SKJrJrJrJr  S
SKJr  SSKJr  SSKJr  \R8                  " \5      rSr " S S\5      r  " S S\	5      r! " S S\5      r" " S S\5      r# " S S\5      r$ " S S\5      r%/ SQr&g)    )OptionalUnionN   )Cache)FlashAttentionKwargs)GradientCheckpointingLayer)CausalLMOutputWithPast)Unpack)TransformersKwargslogging   )GlmAttentionGlmForCausalLMGlmForSequenceClassificationGlmForTokenClassification)Phi3MLP   )
Glm4Config)Glm4RMSNormzTHUDM/GLM-4-9B-0414c                       \ rS rSrSrg)Glm4MLP%    N__name__
__module____qualname____firstlineno____static_attributes__r       ]/var/www/html/shao/venv/lib/python3.13/site-packages/transformers/models/glm4/modular_glm4.pyr   r   %       r    r   c                   t  ^  \ rS rSrS\S\4U 4S jjr      SS\R                  S\	\R                     S\	\R                     S\	\   S	\	\   S
\	\R                     S\	\\R                  \R                  4      S\\   S\\R                   \	\\R                   \R                   4      4   4S jjrSrU =r$ )Glm4DecoderLayer)   config	layer_idxc                   > [         TU ]  5         UR                  U l        [        XS9U l        [        U5      U l        [        UR                  UR                  S9U l	        [        UR                  UR                  S9U l
        [        UR                  UR                  S9U l        [        UR                  UR                  S9U l        g )N)r&   r'   )eps)super__init__hidden_sizeGlm4Attention	self_attnr   mlpr   rms_norm_epsinput_layernormpost_attention_layernormpost_self_attn_layernormpost_mlp_layernorm)selfr&   r'   	__class__s      r!   r+   Glm4DecoderLayer.__init__*   s    !--&fJ6?*6+=+=6CVCVW(3F4F4FFL_L_(`%(3F4F4FFL_L_(`%"-f.@.@fFYFY"Zr    hidden_statesattention_maskposition_idspast_key_value	use_cachecache_positionposition_embeddingskwargsreturnc                     Un	U R                  U5      nU R                  " SUUUUUUUS.UD6u  pU R                  U5      nX-   nUn	U R                  U5      nU R	                  U5      nU R                  U5      nX-   nU$ )N)r8   r9   r:   r;   r<   r=   r>   r   )r1   r.   r3   r2   r/   r4   )r5   r8   r9   r:   r;   r<   r=   r>   r?   residual_s              r!   forwardGlm4DecoderLayer.forward5   s     !,,];>> 	
')%)) 3	
 	
 55mD 0 55mD///> 0r    )r,   r1   r/   r2   r4   r3   r.   )NNNFNN)r   r   r   r   r   intr+   torchTensorr   
LongTensorr   booltupler
   r   FloatTensorrD   r   __classcell__r6   s   @r!   r$   r$   )   s   	[z 	[c 	[ 2637*.$)59KO!||! !.! u//0	!
 !! D>! !!1!12! &eELL%,,,F&GH! -.! 
u  (51B1BEDUDU1U+V"WW	X! !r    r$   c                       \ rS rSrSrg)r-   Y   r   Nr   r   r    r!   r-   r-   Y   r"   r    r-   c                   D   ^  \ rS rSrS\\   S\\\4   4U 4S jjr	Sr
U =r$ )Glm4ForCausalLM]   super_kwargsr@   c                 $   > [         TU ]  " S0 UD6$ )a  
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
    Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
    config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
    (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

Example:

```python
>>> from transformers import AutoTokenizer, Glm4ForCausalLM

>>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-0414")
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-0414")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```r   )r*   rD   )r5   rT   r6   s     r!   rD   Glm4ForCausalLM.forward^   s    4 w...r    r   )r   r   r   r   r
   r   r   rK   r	   rD   r   rM   rN   s   @r!   rR   rR   ]   s0    /12/ 
u,,	-/ /r    rR   c                       \ rS rSrSrg)Glm4ForSequenceClassification{   r   Nr   r   r    r!   rX   rX   {   r"   r    rX   c                       \ rS rSrSrg)Glm4ForTokenClassification   r   Nr   r   r    r!   r[   r[      r"   r    r[   )Glm4PreTrainedModel	Glm4ModelrR   rX   r[   )'typingr   r   rG   cache_utilsr   modeling_flash_attention_utilsr   modeling_layersr   modeling_outputsr	   processing_utilsr
   utilsr   r   glm.modeling_glmr   r   r   r   phi3.modeling_phi3r   configuration_glm4r   modeling_glm4r   
get_loggerr   logger_CHECKPOINT_FOR_DOCr   r$   r-   rR   rX   r[   __all__r   r    r!   <module>rn      s     #    B 9 6 & 0 t t ( * & 
		H	%+ 	g 	-1 -`	L 	/n /<	$@ 		!: 	r    