
    <h"4                     <    S SK JrJr  S SKJr   " S S\5      rS/rg)   )PretrainedConfiglayer_type_validation)rope_config_validationc                      ^  \ rS rSrSrSrS/rSSSSSSSS.rS/S	/4S
S/S
/4S
/S
/4S.r                        SU 4S jjr	Sr
U =r$ )SmolLM3Config   aB  
This is the configuration class to store the configuration of a [`SmolLM3Model`]. It is used to instantiate a
SmolLM3 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the SmolLM3 3B.
e.g. [HuggingFaceTB/SmolLM3-3B](https://huggingface.co/HuggingFaceTB/SmolLM3-3B)

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    vocab_size (`int`, *optional*, defaults to 128256):
        Vocabulary size of the SmolLM3 model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`SmolLM3Model`]
    hidden_size (`int`, *optional*, defaults to 2048):
        Dimension of the hidden representations.
    intermediate_size (`int`, *optional*, defaults to 11008):
        Dimension of the MLP representations.
    num_hidden_layers (`int`, *optional*, defaults to 36):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the Transformer encoder.
    num_key_value_heads (`int`, *optional*, defaults to 4):
        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
        `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
        by meanpooling all the original heads within that group. For more details checkout [this
        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `16`.
    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
        The non-linear activation function (function or string) in the decoder.
    max_position_embeddings (`int`, *optional*, defaults to 32768):
        The maximum sequence length that this model might ever be used with.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
        The epsilon used by the rms normalization layers.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models). Only
        relevant if `config.is_decoder=True`.
    pad_token_id (`int`, *optional*, defaults to 128004):
        The id of the padding token.
    bos_token_id (`int`, *optional*, defaults to 128000):
        The id of the beginning of sentence token.
    eos_token_id (`int`, *optional*, defaults to 128001):
        The id of the end of sentence token.
    rope_theta (`float`, *optional*, defaults to 2000000.0):
        The base period of the RoPE embeddings.
    rope_scaling (`Dict`, *optional*):
        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
        accordingly.
        Expected contents:
            `rope_type` (`str`):
                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                'llama3'], with 'default' being the original RoPE implementation.
            `factor` (`float`, *optional*):
                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                original maximum pre-trained length.
            `original_max_position_embeddings` (`int`, *optional*):
                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                pretraining.
            `attention_factor` (`float`, *optional*):
                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                computation. If unspecified, it defaults to value recommended by the implementation, using the
                `factor` field to infer the suggested value.
            `beta_fast` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                ramp function. If unspecified, it defaults to 32.
            `beta_slow` (`float`, *optional*):
                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                ramp function. If unspecified, it defaults to 1.
            `short_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `long_factor` (`List[float]`, *optional*):
                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                size divided by the number of attention heads divided by 2
            `low_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
            `high_freq_factor` (`float`, *optional*):
                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
    use_sliding_window (`bool`, *optional*, defaults to `False`):
        Whether to use sliding window attention.
    sliding_window (`int`, *optional*):
        Sliding window attention (SWA) window size. If not specified, will default to `None`.
    no_rope_layers (`List[int]`, *optional*):
        List with at least the same length as the number of layers in the model.
        A `1` at an index position indicates that the corresponding layer will use RoPE,
        while a `0` indicates that it's a NoPE layer.
    no_rope_layer_interval (`int`, *optional*, defaults to 4):
        If `no_rope_layers` is `None`, it will be created using a NoPE layer every
        `no_rope_layer_interval` layers.
    layer_types (`list`, *optional*):
        Attention pattern for each layer. Automatically computed based on sliding window and NoPE settings.
    attention_bias (`bool`, *optional*, defaults to `False`):
        Whether to use a bias in the query, key, value and output projection layers during self-attention.
    attention_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.

```python
>>> from transformers import SmolLM3Model, SmolLM3Config

>>> # Initializing a SmolLM3 style configuration
>>> configuration = SmolLM3Config()

>>> # Initializing a model from the SmolLM3 style configuration
>>> model = SmolLM3Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```smollm3past_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                 $  > [         TU ]  " SUUUS.UD6  Xl        Xl        UU l        X l        X0l        X@l        XPl        UU l	        UU l
        Uc  UnX`l        Xpl        Xl        Xl        Xl        Xl        UU l        UU l        UU l        Uc3  [)        U5       Vs/ sH  n[+        US-   U-  S:g  5      PM     snU l        OUU l        UU l        UcX  / n[)        U5       HG  nU R,                  U   nU(       a  Ub  U(       d  UR1                  S5        M6  UR1                  S5        MI     UU l        [5        U R2                  5        U R"                  b,  SU R"                  ;   a  U R"                  S   U R"                  S'   [7        U 5        g s  snf )	N)pad_token_idbos_token_ideos_token_id       sliding_attentionfull_attentiontype	rope_type )super__init__
vocab_sizemax_position_embeddingsmlp_biashidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsuse_sliding_windowsliding_windownum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutrangeintno_rope_layersno_rope_layer_intervalappendlayer_typesr   r   )selfr!   r$   r%   r&   r'   r*   r+   r"   r,   r-   r.   r   r   r   r/   r0   r(   r)   r5   r6   r8   r1   r2   r#   kwargs	layer_idxhas_rope	__class__s                               i/var/www/html/shao/venv/lib/python3.13/site-packages/transformers/models/smollm3/configuration_smollm3.pyr    SmolLM3Config.__init__   s   8 	 	
%%%	
 		
 %'>$ &!2!2#6 "4, &"5#6 $!2("$(,!2!TYZkTl#TlyY]&<<ABTl#D #1D&<# K"#45	..y9%.*DX&&':;&&'78 6 'd../ (Vt7H7H-H-1->->v-FDk*t$3#s   F)r1   r2   r+   r$   r,   r%   r8   r"   r#   r6   r5   r'   r&   r*   r-   r0   r/   r)   r.   r(   r!   )i  i   i +  $         silui   g{Gz?gư>Ti i  i g    >ANFNNrB   NFg        F)__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr    __static_attributes____classcell__)r=   s   @r>   r   r      s    qf J#4"5 &/%.%.%."+ )"+ &(9:#%568IJ!"_$56  %  3T% T%    r   N)configuration_utilsr   r   modeling_rope_utilsr   r   __all__r   rO   r>   <module>rS      s(   , K 9Z%$ Z%z 
rO   