
    @h~1                         S r SSKJrJr  SSKJr  SSKJr  SSKJ	r	  SSK
Jr  SSKJr  SSKJr  SS	KJr  SS
KJrJr  SSKJr  \" SSSS9 " S S\5      5       rg)zMChain for applying constitutional principles to the outputs of another chain.    )AnyOptional)
deprecated)CallbackManagerForChainRun)BaseLanguageModel)BasePromptTemplate)Chain)ConstitutionalPrinciple)
PRINCIPLES)CRITIQUE_PROMPTREVISION_PROMPTLLMChainz0.2.13zThis class is deprecated and will be removed in langchain 1.0. See API reference for replacement: https://api.python.langchain.com/en/latest/chains/langchain.chains.constitutional_ai.base.ConstitutionalChain.htmlz1.0)sincemessageremovalc                   L   \ rS rSr% Sr\\S'   \\   \S'   \\S'   \\S'   Sr	\
\S'   \ SS
\\\      S\\   4S jj5       r\\\4S\S\S\S\S\SS 4S jj5       r\S\\   4S j5       r\S\\   4S j5       r SS\\\4   S\\   S\\\4   4S jjr\S\S\4S j5       rSrg	)ConstitutionalChain   a7  Chain for applying constitutional principles.

Note: this class is deprecated. See below for a replacement implementation
    using LangGraph. The benefits of this implementation are:

    - Uses LLM tool calling features instead of parsing string responses;
    - Support for both token-by-token and step-by-step streaming;
    - Support for checkpointing and memory of chat history;
    - Easier to modify or extend (e.g., with additional tools, structured responses, etc.)

    Install LangGraph with:

    .. code-block:: bash

        pip install -U langgraph

    .. code-block:: python

        from typing import List, Optional, Tuple

        from langchain.chains.constitutional_ai.prompts import (
            CRITIQUE_PROMPT,
            REVISION_PROMPT,
        )
        from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
        from langchain_core.output_parsers import StrOutputParser
        from langchain_core.prompts import ChatPromptTemplate
        from langchain_openai import ChatOpenAI
        from langgraph.graph import END, START, StateGraph
        from typing_extensions import Annotated, TypedDict

        llm = ChatOpenAI(model="gpt-4o-mini")

        class Critique(TypedDict):
            """Generate a critique, if needed."""
            critique_needed: Annotated[bool, ..., "Whether or not a critique is needed."]
            critique: Annotated[str, ..., "If needed, the critique."]

        critique_prompt = ChatPromptTemplate.from_template(
            "Critique this response according to the critique request. "
            "If no critique is needed, specify that.\n\n"
            "Query: {query}\n\n"
            "Response: {response}\n\n"
            "Critique request: {critique_request}"
        )

        revision_prompt = ChatPromptTemplate.from_template(
            "Revise this response according to the critique and reivsion request.\n\n"
            "Query: {query}\n\n"
            "Response: {response}\n\n"
            "Critique request: {critique_request}\n\n"
            "Critique: {critique}\n\n"
            "If the critique does not identify anything worth changing, ignore the "
            "revision request and return 'No revisions needed'. If the critique "
            "does identify something worth changing, revise the response based on "
            "the revision request.\n\n"
            "Revision Request: {revision_request}"
        )

        chain = llm | StrOutputParser()
        critique_chain = critique_prompt | llm.with_structured_output(Critique)
        revision_chain = revision_prompt | llm | StrOutputParser()


        class State(TypedDict):
            query: str
            constitutional_principles: List[ConstitutionalPrinciple]
            initial_response: str
            critiques_and_revisions: List[Tuple[str, str]]
            response: str


        async def generate_response(state: State):
            """Generate initial response."""
            response = await chain.ainvoke(state["query"])
            return {"response": response, "initial_response": response}

        async def critique_and_revise(state: State):
            """Critique and revise response according to principles."""
            critiques_and_revisions = []
            response = state["initial_response"]
            for principle in state["constitutional_principles"]:
                critique = await critique_chain.ainvoke(
                    {
                        "query": state["query"],
                        "response": response,
                        "critique_request": principle.critique_request,
                    }
                )
                if critique["critique_needed"]:
                    revision = await revision_chain.ainvoke(
                        {
                            "query": state["query"],
                            "response": response,
                            "critique_request": principle.critique_request,
                            "critique": critique["critique"],
                            "revision_request": principle.revision_request,
                        }
                    )
                    response = revision
                    critiques_and_revisions.append((critique["critique"], revision))
                else:
                    critiques_and_revisions.append((critique["critique"], ""))
            return {
                "critiques_and_revisions": critiques_and_revisions,
                "response": response,
            }

        graph = StateGraph(State)
        graph.add_node("generate_response", generate_response)
        graph.add_node("critique_and_revise", critique_and_revise)

        graph.add_edge(START, "generate_response")
        graph.add_edge("generate_response", "critique_and_revise")
        graph.add_edge("critique_and_revise", END)
        app = graph.compile()

    .. code-block:: python

        constitutional_principles=[
            ConstitutionalPrinciple(
                critique_request="Tell if this answer is good.",
                revision_request="Give a better answer.",
            )
        ]

        query = "What is the meaning of life? Answer in 10 words or fewer."

        async for step in app.astream(
            {"query": query, "constitutional_principles": constitutional_principles},
            stream_mode="values",
        ):
            subset = ["initial_response", "critiques_and_revisions", "response"]
            print({k: v for k, v in step.items() if k in subset})

Example:
    .. code-block:: python

        from langchain_community.llms import OpenAI
        from langchain.chains import LLMChain, ConstitutionalChain
        from langchain.chains.constitutional_ai.models                 import ConstitutionalPrinciple

        llm = OpenAI()

        qa_prompt = PromptTemplate(
            template="Q: {question} A:",
            input_variables=["question"],
        )
        qa_chain = LLMChain(llm=llm, prompt=qa_prompt)

        constitutional_chain = ConstitutionalChain.from_llm(
            llm=llm,
            chain=qa_chain,
            constitutional_principles=[
                ConstitutionalPrinciple(
                    critique_request="Tell if this answer is good.",
                    revision_request="Give a better answer.",
                )
            ],
        )

        constitutional_chain.run(question="What is the meaning of life?")
chainconstitutional_principlescritique_chainrevision_chainFreturn_intermediate_stepsNnamesreturnc                     Uc  [        [        R                  " 5       5      $ U Vs/ sH  n[        U   PM     sn$ s  snf N)listr   values)clsr   names      _/var/www/html/shao/venv/lib/python3.13/site-packages/langchain/chains/constitutional_ai/base.pyget_principles"ConstitutionalChain.get_principles   s:    
 =
))+,,-23UT
4 U333s   ;llmcritique_promptrevision_promptkwargsc                 >    [        XS9n[        XS9nU " SUUUS.UD6$ )zCreate a chain from an LLM.)r&   prompt)r   r   r    r   )r!   r&   r   r'   r(   r)   r   r   s           r#   from_llmConstitutionalChain.from_llm   s=     "cB!cB 
))
 	
 	
    c                 .    U R                   R                  $ )zInput keys.)r   
input_keysselfs    r#   r1   ConstitutionalChain.input_keys   s     zz$$$r/   c                 2    U R                   (       a  / SQ$ S/$ )zOutput keys.)outputcritiques_and_revisionsinitial_outputr6   )r   r2   s    r#   output_keysConstitutionalChain.output_keys   s     ))JJzr/   inputsrun_managerc                 2   U=(       d    [         R                  " 5       nU R                  R                  " S0 UDSUR	                  S5      0D6nUnU R                  R
                  R                  " S0 UD6nUR                  SU-   S-   U R                  SS9  / nU R                   GHP  nU R                  R                  UUUR                  UR	                  S5      S9n	U R                  U	S	9R                  5       n
S
U
R                  5       ;   a  UR                  U
S45        M  U R                   R                  UUUR                  U
UR"                  UR	                  S5      S9R                  5       nUnUR                  X45        UR                  SUR$                   S3S-   U R                  SS9  UR                  SU
-   S-   U R                  SS9  UR                  SU-   S-   U R                  SS9  GMS     SU0nU R&                  (       a  X\S'   X|S'   U$ )N	callbacksoriginalzInitial response: 

yellow)textverbosecolorcritique)input_promptoutput_from_modelcritique_requestr>   output_stringzno critique needed revision)rF   rG   rH   rE   revision_requestr>   z	Applying z...greenz
Critique: bluezUpdated response: r6   r8   r7   r,   )r   get_noop_managerr   run	get_childr+   formaton_textrC   r   r   rH   _parse_critiquestriplowerappendr   rM   r"   r   )r3   r;   r<   _run_managerresponseinitial_responserF   r7   constitutional_principleraw_critiquerE   rL   final_outputs                r#   _callConstitutionalChain._call   sY   
 #S&@&Q&Q&S::>> 

",,Z8
 $zz((//9&9%069LL 	 	

 #%(,(F(F$  ..22)"*!9!J!J&00<	 3 L ++* , eg  $x~~'77'.."~> **..)"*!9!J!J!!9!J!J&00< /  eg   H#**H+?@   !9!>!> ?sCfL !    !H,v5 !    )H4v= ! [ )Gf )1(';))-=)*6M23r/   rJ   c                 r    SU ;  a  U $ U R                  S5      S   n SU ;   a  U R                  S5      S   n U $ )NzRevision request:r   r@   )splitrI   s    r#   rU   #ConstitutionalChain._parse_critique:  sI    m3  %++,?@C]")//7:Mr/   r,   r   )__name__
__module____qualname____firstlineno____doc__r   __annotations__r   r
   r   boolclassmethodr   strr$   r   r   r   r   r   r-   propertyr1   r9   dictr   r_   staticmethodrU   __static_attributes__r,   r/   r#   r   r      sc   cJ O#$;<<&+t+ &*4S	"4 
%	&4 4 
 />.=

 
 ,	

 ,
 
 

 
$ %DI % % T#Y   =AJS#XJ 89J 
c3h	JX s s  r/   r   N)rh   typingr   r   langchain_core._apir   langchain_core.callbacksr   langchain_core.language_modelsr   langchain_core.promptsr   langchain.chains.baser	   )langchain.chains.constitutional_ai.modelsr
   -langchain.chains.constitutional_ai.principlesr   *langchain.chains.constitutional_ai.promptsr   r   langchain.chains.llmr   r   r,   r/   r#   <module>r{      sW    S   * ? < 5 ' M D W ) 
	} g% ggr/   