
    Ch`!                    v    S SK Jr  S SKJr  S SKrS SKJrJr  S SKJr  SSK	J
r
   " S S	\R                  5      rg)
    )annotations)IterableN)Tensornn)SentenceTransformer   )$BatchHardTripletLossDistanceFunctionc                     ^  \ rS rSr\R
                  S4     S
U 4S jjjrSS jrSS jr\	SSS jj5       r
\	SSS jj5       r\SS j5       rS	rU =r$ )BatchSemiHardTripletLoss      c                F   > [         TU ]  5         Xl        X0l        X l        g)a  
BatchSemiHardTripletLoss takes a batch with (label, sentence) pairs and computes the loss for all possible, valid
triplets, i.e., anchor and positive must have the same label, anchor and negative a different label. It then looks
for the semi hard positives and negatives.
The labels must be integers, with same label indicating sentences from the same class. Your train dataset
must contain at least 2 examples per label class.

Args:
    model: SentenceTransformer model
    distance_metric: Function that returns a distance between
        two embeddings. The class SiameseDistanceMetric contains
        pre-defined metrics that can be used
    margin: Negative samples should be at least margin further
        apart from the anchor than the positive.

Definitions:
    :Easy triplets: Triplets which have a loss of 0 because
        ``distance(anchor, positive) + margin < distance(anchor, negative)``.
    :Hard triplets: Triplets where the negative is closer to the anchor than the positive, i.e.,
        ``distance(anchor, negative) < distance(anchor, positive)``.
    :Semi-hard triplets: Triplets where the negative is not closer to the anchor than the positive, but which
        still have a positive loss, i.e., ``distance(anchor, positive) < distance(anchor, negative) + margin``.

References:
    * Source: https://github.com/NegatioN/OnlineMiningTripletLoss/blob/master/online_triplet_loss/losses.py
    * Paper: In Defense of the Triplet Loss for Person Re-Identification, https://arxiv.org/abs/1703.07737
    * Blog post: https://omoindrot.github.io/triplet-loss

Requirements:
    1. Each sentence must be labeled with a class.
    2. Your dataset must contain at least 2 examples per labels class.
    3. Your dataset should contain semi hard positives and negatives.

Inputs:
    +------------------+--------+
    | Texts            | Labels |
    +==================+========+
    | single sentences | class  |
    +------------------+--------+

Recommendations:
    - Use ``BatchSamplers.GROUP_BY_LABEL`` (:class:`docs <sentence_transformers.training_args.BatchSamplers>`) to
      ensure that each batch contains 2+ examples per label class.

Relations:
    * :class:`BatchHardTripletLoss` uses only the hardest positive and negative samples, rather than only semi hard positive and negatives.
    * :class:`BatchAllTripletLoss` uses all possible, valid triplets, rather than only semi hard positive and negatives.
    * :class:`BatchHardSoftMarginTripletLoss` uses only the hardest positive and negative samples, rather than only semi hard positive and negatives.
      Also, it does not require setting a margin.

Example:
    ::

        from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses
        from datasets import Dataset

        model = SentenceTransformer("microsoft/mpnet-base")
        # E.g. 0: sports, 1: economy, 2: politics
        train_dataset = Dataset.from_dict({
            "sentence": [
                "He played a great game.",
                "The stock is up 20%",
                "They won 2-1.",
                "The last goal was amazing.",
                "They all voted against the bill.",
            ],
            "label": [0, 1, 0, 0, 2],
        })
        loss = losses.BatchSemiHardTripletLoss(model)

        trainer = SentenceTransformerTrainer(
            model=model,
            train_dataset=train_dataset,
            loss=loss,
        )
        trainer.train()
N)super__init__sentence_embeddermargindistance_metric)selfmodelr   r   	__class__s       m/var/www/html/shao/venv/lib/python3.13/site-packages/sentence_transformers/losses/BatchSemiHardTripletLoss.pyr   !BatchSemiHardTripletLoss.__init__   s"    f 	!&.    c                R    U R                  US   5      S   nU R                  X#5      $ )Nr   sentence_embedding)r   batch_semi_hard_triplet_loss)r   sentence_featureslabelsreps       r   forward BatchSemiHardTripletLoss.forwardf   s/    $$%6q%9:;OP00==r   c           
     d   UR                  S5      nU R                  U5      nXR                  5       :H  nU) n[        R                  " U5      nUR                  US/5      nUR                  US/5      U[        R                  " UR                  5       SS/5      :  -  n[        R                  " [        R                  " USSS9S:  Xf/5      n	U	R                  5       n	[        R                  " [        R                  Xx5      Xf/5      n
U
R                  5       n
[        R                  X55      nUR                  SU/5      n[        R                  " XU5      nX<-
  U R                  -   nUR                  5       R                  UR                  5      [        R                   " XaR                  S9-
  nUR                  UR                  5      n[        R                  " U5      n[        R                  " [        R"                  " X-  [        R$                  " S/UR                  S95      5      U-  nU$ )a  Build the triplet loss over a batch of embeddings.
We generate all the valid triplets and average the loss over the positive ones.
Args:
    labels: labels of the batch, of size (batch_size,)
    embeddings: tensor of shape (batch_size, embed_dim)
    margin: margin for triplet loss
    squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
             If false, output is the pairwise euclidean distance matrix.
Returns:
    Label_Sentence_Triplet: scalar tensor containing the triplet loss
r   Tkeepdimsg        )device)	unsqueezer   ttorchnumelrepeatreshapesumr   _masked_minimum_masked_maximumwherer   floattor&   eyemaxtensor)r   r   
embeddingspdist_matrix	adjacencyadjacency_not
batch_sizepdist_matrix_tilemask
mask_finalnegatives_outsidenegatives_insidesemi_hard_negativesloss_matmask_positivesnum_positivestriplet_losss                    r   r   5BatchSemiHardTripletLoss.batch_semi_hard_triplet_lossm   s    !!!$++J7hhj(	"
[[(
(//Q@##ZO48IEMMZfZhZhZjmoqrlsLt8tu]]599T1t#Ds#JZLde
\\^
!MM$445FMPZOg
 .//13CCL`+22Az?C#kk*IYZ 6$++E"*--fmm<uyy\i\i?jj'**6==9		.1 IIeii 95<<V\VcVc;defivv 	 r   c                d    U R                  USS9u  p4X-
  U-  nUR                  USS9u  pTXS-  nU$ NTr$   )r4   min)datar<   dimaxis_maximums_masked_minimumss         r   r.   (BatchSemiHardTripletLoss._masked_minimum   J    88C$87/47,00t0D(r   c                d    U R                  USS9u  p4X-
  U-  nUR                  USS9u  pTXS-  nU$ rG   )rH   r4   )rI   r<   rJ   axis_minimumsrL   masked_maximumss         r   r/   (BatchSemiHardTripletLoss._masked_maximum   rO   r   c                    g)Na  
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
 )r   s    r   citation!BatchSemiHardTripletLoss.citation   s    	r   )r   r   r   )r   r   r   r1   returnNone)r   zIterable[dict[str, Tensor]]r   r   rX   r   )r   r   r6   r   rX   r   )r   )rI   r   r<   r   rJ   intrX   r   )rX   str)__name__
__module____qualname____firstlineno__r	   eucledian_distancer   r    r   staticmethodr.   r/   propertyrV   __static_attributes____classcell__)r   s   @r   r   r      s     =OO	V/"V/ 	V/
 
V/ V/p>/b     
 
r   r   )
__future__r   collections.abcr   r)   r   r   )sentence_transformers.SentenceTransformerr   BatchHardTripletLossr	   Moduler   rU   r   r   <module>rj      s)    " $   I Fnryy nr   