
    <h_                        S SK r S SKJrJrJr  S SKrS SKrS SKJ	r	  S SKJ
r
  SSKJr  SSKJr  SSKJr  SSKJrJr  SS	KJr  SS
KJr  SSKJrJrJr  SSKJrJr  SSKJ r   SSK!J"r"J#r#J$r$  SSK%J&r&  \#" 5       (       a  SSK'J(r(  \$RR                  " \*5      r+ " S S\	RX                  5      r- " S S\	RX                  5      r. " S S\5      r/ " S S\5      r0 " S S\5      r1 " S S\	RX                  5      r2 " S S\	RX                  5      r3   SIS \	RX                  S!\Rh                  S"\Rh                  S#\Rh                  S$\\Rh                     S%\\5   S&\5S'\\Rh                     4S( jjr6 " S) S*\	RX                  5      r7 " S+ S,\	RX                  5      r8 " S- S.\5      r9 " S/ S0\	RX                  5      r: " S1 S2\	RX                  5      r; " S3 S4\5      r< " S5 S6\	RX                  5      r=\" " S7 S8\5      5       r>  SJS9\?\@\@4   S:\5S;\@S$\\R                     S<\@S=\R                  4S> jjrC\" " S? S@\>5      5       rDSrE\"" SASB9 " SC SD\>5      5       rF\"" SESB9 " SF SG\>5      5       rG/ SHQrHg)K    N)CallableOptionalUnion)CrossEntropyLoss   )ACT2FN)is_deepspeed_zero3_enabled)is_fsdp_managed_module)_prepare_4d_attention_mask#_prepare_4d_attention_mask_for_sdpa)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputCausalLMOutputSequenceClassifierOutput)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)auto_docstringis_torch_flex_attn_availablelogging   )HubertConfig)make_flex_block_causal_maskc                   .   ^  \ rS rSrU 4S jrS rSrU =r$ )HubertPositionalConvEmbedding2   c                 2  > [         TU ]  5         [        R                  " UR                  UR                  UR
                  UR
                  S-  UR                  S9U l        S U l        UR                  (       a'  [        R                  " UR                  5      U l        GO[        R                  R                  n[        [        R                  R                  S5      (       a$  [        R                  R                  R                  n[        5       (       Ga%  SS KnUR"                  R%                  U R                  R&                  SS9   U" U R                  SSS9U l        S S S 5        [        U R                  S5      (       aU  U R                  R                  R&                  R(                  nU R                  R                  R&                  R*                  nO,U R                  R,                  nU R                  R.                  nUR"                  R1                  X5        UR"                  R1                  X5        OU" U R                  SSS9U l        [3        UR
                  5      U l        [6        UR8                     U l        g ! , (       d  f       GN,= f)	N   )kernel_sizepaddinggroupsweight_normr   modifier_rankweight)namedimparametrizations)super__init__nnConv1dhidden_sizenum_conv_pos_embeddingsnum_conv_pos_embedding_groupsconv
batch_normconv_pos_batch_normBatchNorm1dutilsr#   hasattrr)   r	   	deepspeedzeroGatheredParametersr&   	original0	original1weight_gweight_vregister_external_parameterHubertSamePadLayerr!   r   feat_extract_activation
activation)selfconfigr#   r7   r<   r=   	__class__s         b/var/www/html/shao/venv/lib/python3.13/site-packages/transformers/models/hubert/modeling_hubert.pyr+   &HubertPositionalConvEmbedding.__init__3   s   II6622a777
	 %% nnV-?-?@DO((..Krxx00-@@ hh77CC)++ ^^66tyy7G7GWX6Y +DIIH! LDI Z499&899#yy99@@JJH#yy99@@JJH#yy11H#yy11H::4J::4J'		aH	)&*H*HI !?!?@ ZYs   
J
Jc                     UR                  SS5      nU R                  b  U R                  U5      nU R                  U5      nU R                  U5      nU R	                  U5      nUR                  SS5      nU$ )Nr   r   )	transposer2   r1   r!   rA   rB   hidden_statess     rE   forward%HubertPositionalConvEmbedding.forwardX   sn    %//15??& OOM:M		-0]36%//15    )rA   r2   r1   r!   __name__
__module____qualname____firstlineno__r+   rK   __static_attributes____classcell__rD   s   @rE   r   r   2   s    #AJ	 	rM   r   c                   .   ^  \ rS rSrU 4S jrS rSrU =r$ )r?   d   c                 R   > [         TU ]  5         US-  S:X  a  SU l        g SU l        g )Nr   r   r   )r*   r+   num_pad_remove)rB   r/   rD   s     rE   r+   HubertSamePadLayer.__init__e   s)    #:Q#>!#CarM   c                 X    U R                   S:  a  US S 2S S 2S U R                   * 24   nU$ Nr   rY   rI   s     rE   rK   HubertSamePadLayer.forwardi   s6    ")!Q0F43F3F2F0F*FGMrM   r]   rN   rU   s   @rE   r?   r?   d   s    K rM   r?   c                   2   ^  \ rS rSrSU 4S jjrS rSrU =r$ )HubertNoLayerNormConvLayero   c                 b  > [         TU ]  5         US:  a  UR                  US-
     OSU l        UR                  U   U l        [
        R                  " U R                  U R                  UR                  U   UR                  U   UR                  S9U l
        [        UR                     U l        g )Nr   r   r    stridebias)r*   r+   conv_dimin_conv_dimout_conv_dimr,   r-   conv_kernelconv_stride	conv_biasr1   r   r@   rA   rB   rC   layer_idrD   s      rE   r+   #HubertNoLayerNormConvLayer.__init__p   s    <DqL6??8a<8a"OOH5II**84%%h/!!
	 !!?!?@rM   c                 J    U R                  U5      nU R                  U5      nU$ N)r1   rA   rI   s     rE   rK   "HubertNoLayerNormConvLayer.forward~   s$    		-06rM   )rA   r1   rg   rh   r   rN   rU   s   @rE   r`   r`   o   s    A rM   r`   c                   2   ^  \ rS rSrSU 4S jjrS rSrU =r$ )HubertLayerNormConvLayer   c                   > [         TU ]  5         US:  a  UR                  US-
     OSU l        UR                  U   U l        [
        R                  " U R                  U R                  UR                  U   UR                  U   UR                  S9U l
        [
        R                  " U R                  SS9U l        [        UR                     U l        g )Nr   r   rc   T)elementwise_affine)r*   r+   rf   rg   rh   r,   r-   ri   rj   rk   r1   	LayerNorm
layer_normr   r@   rA   rl   s      rE   r+   !HubertLayerNormConvLayer.__init__   s    <DqL6??8a<8a"OOH5II**84%%h/!!
	 ,,t'8'8TR !?!?@rM   c                     U R                  U5      nUR                  SS5      nU R                  U5      nUR                  SS5      nU R                  U5      nU$ )N)r1   rH   ry   rA   rI   s     rE   rK    HubertLayerNormConvLayer.forward   sV    		-0%//B76%//B76rM   rA   r1   rg   ry   rh   rr   rN   rU   s   @rE   rt   rt      s    A rM   rt   c                   2   ^  \ rS rSrSU 4S jjrS rSrU =r$ )HubertGroupNormConvLayer   c                   > [         TU ]  5         US:  a  UR                  US-
     OSU l        UR                  U   U l        [
        R                  " U R                  U R                  UR                  U   UR                  U   UR                  S9U l
        [        UR                     U l        [
        R                  " U R                  U R                  SS9U l        g )Nr   r   rc   T)
num_groupsnum_channelsaffine)r*   r+   rf   rg   rh   r,   r-   ri   rj   rk   r1   r   r@   rA   	GroupNormry   rl   s      rE   r+   !HubertGroupNormConvLayer.__init__   s    <DqL6??8a<8a"OOH5II**84%%h/!!
	 !!?!?@,,$2C2CRVRcRclpqrM   c                 l    U R                  U5      nU R                  U5      nU R                  U5      nU$ rp   )r1   ry   rA   rI   s     rE   rK    HubertGroupNormConvLayer.forward   s2    		-066rM   r   rr   rN   rU   s   @rE   r   r      s    r  rM   r   c                   8   ^  \ rS rSrSrU 4S jrS rS rSrU =r	$ )HubertFeatureEncoder   z.Construct the features from raw audio waveformc           	        > [         TU ]  5         UR                  S:X  a?  [        USS9/[	        UR
                  S-
  5       Vs/ sH  n[        XS-   S9PM     sn-   nOUUR                  S:X  a,  [	        UR
                  5       Vs/ sH  n[        XS9PM     nnO[        SUR                   S35      e[        R                  " U5      U l        SU l        S	U l        g s  snf s  snf )
Ngroupr   )rm   r   layerz`config.feat_extract_norm` is z), but has to be one of ['group', 'layer']FT)r*   r+   feat_extract_normr   rangenum_feat_extract_layersr`   rt   
ValueErrorr,   
ModuleListconv_layersgradient_checkpointing_requires_grad)rB   rC   ir   rD   s       rE   r+   HubertFeatureEncoder.__init__   s    ##w.3FQGHLQRXRpRpstRtLuLLuq*6EBLuL K %%0QVW]WuWuQvwQvA3FGQvKwK01I1I0JJst  ==5&+#"L xs   CC#c                 N    U R                  5        H
  nSUl        M     SU l        g NF)
parametersrequires_gradr   rB   params     rE   _freeze_parameters'HubertFeatureEncoder._freeze_parameters   s#    __&E"'E '#rM   c                     US S 2S 4   nU R                   (       a  U R                  (       a  SUl        U R                   H  nU" U5      nM     U$ )NT)r   trainingr   r   )rB   input_valuesrJ   
conv_layers       rE   rK   HubertFeatureEncoder.forward   sK    $QW- 4==*.M'**J&}5M + rM   )r   r   r   )
rO   rP   rQ   rR   __doc__r+   r   rK   rS   rT   rU   s   @rE   r   r      s    8#"$

 
rM   r   c                   .   ^  \ rS rSrU 4S jrS rSrU =r$ )HubertFeatureProjection   c                 x  > [         TU ]  5         UR                  U l        U R                  (       a1  [        R                  " UR
                  S   UR                  S9U l        [        R                  " UR
                  S   UR                  5      U l
        [        R                  " UR                  5      U l        g )Nr}   eps)r*   r+   feat_proj_layer_normr,   rx   rf   layer_norm_epsry   Linearr.   
projectionDropoutfeat_proj_dropoutdropoutrB   rC   rD   s     rE   r+    HubertFeatureProjection.__init__   s}    $*$?$?!$$ ll6??2+>FDYDYZDO))FOOB$79K9KLzz&":":;rM   c                     U R                   (       a  U R                  U5      nU R                  U5      nU R                  U5      nU$ rp   )r   ry   r   r   rI   s     rE   rK   HubertFeatureProjection.forward   s;    $$ OOM:M6]3rM   )r   r   ry   r   rN   rU   s   @rE   r   r      s    < rM   r   modulequerykeyvalueattention_maskscalingr   	head_maskc                    Uc  UR                  S5      S-  n[        R                  " XR                  SS5      5      U-  n	Ub  X-   n	[        R
                  R                  U	SS9n	Ub  XR                  SSSS5      -  n	[        R
                  R                  XU R                  S9n	[        R                  " X5      n
U
R                  SS5      R                  5       n
X4$ )Nr}         r   r   r(   r   )pr   )sizetorchmatmulrH   r,   
functionalsoftmaxviewr   r   
contiguous)r   r   r   r   r   r   r   r   kwargsattn_weightsattn_outputs              rE   eager_attention_forwardr      s     **R.D(<<}}Q':;gEL!#4==((2(>L#nnQAq&AA==((6??([L,,|3K''1-88:K$$rM   c                   Z  ^  \ rS rSrSr     SS\S\S\S\S\S\S	\\	   4U 4S
 jjjr
    SS\R                  S\\R                     S\\R                     S\\R                     S\\   S\\   S\\R                  \\R                     \\\R                        4   4S jjrSrU =r$ )HubertAttentioni  z=Multi-headed attention from 'Attention Is All You Need' paper	embed_dim	num_headsr   
is_decoderre   	is_causalrC   c                   > [         TU ]  5         Xl        X l        X0l        X-  U l        Xpl        U R
                  U-  U R                  :w  a  [        SU R                   SU S35      eU R
                  S-  U l        X@l	        X`l
        [        R                  " XUS9U l        [        R                  " XUS9U l        [        R                  " XUS9U l        [        R                  " XUS9U l        g )Nz;embed_dim must be divisible by num_heads (got `embed_dim`: z and `num_heads`: z).r   )re   )r*   r+   r   r   r   head_dimrC   r   r   r   r   r,   r   k_projv_projq_projout_proj)	rB   r   r   r   r   re   r   rC   rD   s	           rE   r+   HubertAttention.__init__  s     	""!.MMI%$..8MdnnM]$YKr3  }}d*$"ii	4@ii	4@ii	4@		)TBrM   rJ   key_value_statesr   layer_head_maskoutput_attentionsr   returnc                     USLnUR                   SS u  pU(       a  UR                   S   OU	n
XSU R                  4nXSU R                  4nU R                  U5      R                  " U6 R	                  SS5      nU(       a  UOUnU R                  U5      R                  " U6 R	                  SS5      nU R                  U5      R                  " U6 R	                  SS5      n[        nU R                  R                  S:w  a  [        U R                  R                     nU" U UUUU4U R                  (       d  SOU R                  U R                  UUS.UD6u  nnUR                  XS5      R                  5       nU R!                  U5      nUUS4$ )z#Input shape: Batch x Time x ChannelNr}   r   r   eager        )r   r   r   r   )shaper   r   r   rH   r   r   r   rC   _attn_implementationr   r   r   r   reshaper   r   )rB   rJ   r   r   r   r   r   is_cross_attentionbsztgt_lensrc_lenq_input_shapekv_input_shapequery_statescurrent_states
key_statesvalue_statesattention_interfacer   r   s                       rE   rK   HubertAttention.forward/  s    .T9 %**3B//A"((+wr4==9DMM: {{=166FPPQRTUV-?)][[055~FPPQRTUV
{{>277HRRSTVWX(?;;++w6"9$++:Z:Z"[$7%
  $}}C$,,LL/%%
 %
!\ "))#;FFHmmK0L$..rM   )rC   r   r   r   r   r   r   r   r   r   r   r   )r   FTFN)NNNF)rO   rP   rQ   rR   r   intfloatboolr   r   r+   r   Tensorr   r   tuplerK   rS   rT   rU   s   @rE   r   r     s    G  )-CC C 	C
 C C C &C CD 481526,13/||3/ #5<<03/ !.	3/
 "%,,/3/ $D>3/ -.3/ 
u||Xell3XeELL>Q5RR	S3/ 3/rM   r   c                   .   ^  \ rS rSrU 4S jrS rSrU =r$ )HubertFeedForwardie  c                   > [         TU ]  5         [        R                  " UR                  5      U l        [        R                  " UR                  UR                  5      U l	        [        UR                  [        5      (       a  [        UR                     U l        OUR                  U l        [        R                  " UR                  UR                  5      U l        [        R                  " UR                   5      U l        g rp   )r*   r+   r,   r   activation_dropoutintermediate_dropoutr   r.   intermediate_sizeintermediate_dense
isinstance
hidden_actstrr   intermediate_act_fnoutput_densehidden_dropoutoutput_dropoutr   s     rE   r+   HubertFeedForward.__init__f  s    $&JJv/H/H$I!"$))F,>,>@X@X"Yf''--'-f.?.?'@D$'-'8'8D$IIf&>&>@R@RS jj)>)>?rM   c                     U R                  U5      nU R                  U5      nU R                  U5      nU R                  U5      nU R	                  U5      nU$ rp   )r   r  r   r  r  rI   s     rE   rK   HubertFeedForward.forwards  sX    //>00?11-@))-8++M:rM   )r  r   r   r  r  rN   rU   s   @rE   r   r   e  s    @ rM   r   c                   2   ^  \ rS rSrU 4S jrSS jrSrU =r$ )HubertEncoderLayeri}  c                   > [         TU ]  5         [        UR                  UR                  UR
                  SUS9U l        [        R                  " UR                  5      U l
        [        R                  " UR                  UR                  S9U l        [        U5      U l        [        R                  " UR                  UR                  S9U l        g )NFr   r   r   r   rC   r   )r*   r+   r   r.   num_attention_headsattention_dropout	attentionr,   r   r  r   rx   r   ry   r   feed_forwardfinal_layer_normr   s     rE   r+   HubertEncoderLayer.__init__~  s    (((00,,
 zz&"7"78,,v'9'9v?T?TU-f5 "V-?-?VEZEZ [rM   c                     UnU R                  XUS9u  pnU R                  U5      nXA-   nU R                  U5      nXR                  U5      -   nU R	                  U5      nU4nU(       a  Xu4-  nU$ Nr   r   )r  r   ry   r  r  rB   rJ   r   r   attn_residualr   _outputss           rE   rK   HubertEncoderLayer.forward  s    %)-L] *8 *
&Q ]3%56%(9(9-(HH--m< "&GrM   )r  r   r  r  ry   r   rN   rU   s   @rE   r
  r
  }  s    \ rM   r
  c                      ^  \ rS rSrU 4S jr    SS\R                  S\\R                     S\	S\	S\	4
S	 jjr
S\\R                  S4   S
\R                  4S jrSrU =r$ )HubertEncoderi  c                   > [         TU ]  5         Xl        [        U5      U l        [
        R                  " UR                  UR                  S9U l	        [
        R                  " UR                  5      U l        [
        R                  " [        UR                  5       Vs/ sH  n[!        U5      PM     sn5      U l        SU l        g s  snf Nr   F)r*   r+   rC   r   pos_conv_embedr,   rx   r.   r   ry   r   r  r   r   r   num_hidden_layersr
  layersr   rB   rC   r  rD   s      rE   r+   HubertEncoder.__init__  s    ;FC,,v'9'9v?T?TUzz&"7"78mmvOgOgIh$iIhA%7%?Ih$ij&+# %j    CNrJ   r   r   output_hidden_statesreturn_dictc                    U(       a  SOS nU(       a  SOS nUb4  UR                  S5      R                  SSUR                  S   5      nSX) '   U R                  UU5      nU R	                  U5      n	X-   nU R                  U5      nU R                  U5      n[        5       =(       d    [        U 5      n
U R                   H  nU(       a  Xa4-   n[        R                  " / 5      nU R                  =(       a    XR                  R                  :  nU(       a  U
(       a  U" XUS9nUS   nU(       a  SnU(       d  M|  UWS   4-   nM     U(       a  Xa4-   nU(       d  [        S XU4 5       5      $ [!        UUUS	9$ )
N r}   r   r   r   r  NNc              3   ,   #    U H  oc  M  Uv   M     g 7frp   r(  .0vs     rE   	<genexpr>(HubertEncoder.forward.<locals>.<genexpr>       m$[q$[   	last_hidden_staterJ   
attentions)	unsqueezerepeatr   _update_full_maskr  ry   r   r	   r
   r!  r   randr   rC   	layerdropr   r   rB   rJ   r   r   r%  r&  all_hidden_statesall_self_attentionsexpand_attention_maskposition_embeddingssynced_gpusr   dropout_probabilityskip_the_layerlayer_outputss                  rE   rK   HubertEncoder.forward  s    #7BD$5b4%$2$<$<R$@$G$G1mNaNabcNd$e!45M01//

 #11-@%;6]302R6LT6R[[E#$58H$H! #(**R.!]]Z/B[[EZEZ/ZN![ %!Te! !.a 0 ,  &9]1=M<O&O#' !*   14D Dm]GZ$[mmm++*
 	
rM   inputs_embedsc                 r   Ub  U R                   R                  S:X  a  SU;   a  UnU$ S nU$ U R                   R                  S:X  a  [        XR                  5      nU$ U R                   R                  S:X  a+  [	        U[
        R                  5      (       a
  [        USS9nU$ [        XR                  5      nU$ Nflash_attention_2r   sdpaflex_attentionF)r   	rC   r   r   dtyper   r   r   r   r   rB   r   rD  s      rE   r7  HubertEncoder._update_full_mask      
 %{{//3FF343F  MQ  11V; "E^UhUh!i  115EEnell;;%@[`%aN
  "<NL_L_!`rM   rC   r   r   ry   r!  r  NFFT)rO   rP   rQ   rR   r+   r   tensorr   r   r   rK   r   r7  rS   rT   rU   s   @rE   r  r    s    , 26"'%* :
||:
 !.:
  	:

 #:
 :
xellD01 || rM   r  c                   J   ^  \ rS rSrU 4S jrS\R                  4S jrSrU =r	$ )HubertAttnAdapterLayeri  c                   > [         TU ]  5         UR                  U l        UR                  U l        [        R                  " U R
                  5      U l        [        R                  " U R
                  U R                  5      U l
        [        R                  " 5       U l        [        R                  " U R                  U R
                  5      U l        g)z
Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed
up training throughput.
N)r*   r+   adapter_attn_dim	input_dimr.   
hidden_dimr,   rx   normr   linear_1ReLUact_fnlinear_2r   s     rE   r+   HubertAttnAdapterLayer.__init__  s    
 	00 ,,LL1			$//4>>Bggi		$..$//BrM   rJ   c                     U R                  U5      nU R                  U5      nU R                  U5      nU R                  U5      nU$ rp   )rX  rY  r[  r\  rI   s     rE   rK   HubertAttnAdapterLayer.forward  s@    		-0m4M2m4rM   )r[  rW  rV  rY  r\  rX  )
rO   rP   rQ   rR   r+   r   FloatTensorrK   rS   rT   rU   s   @rE   rS  rS    s     CU%6%6  rM   rS  c                   t   ^  \ rS rSrU 4S jr  SS\R                  S\\R                     S\4S jjr	Sr
U =r$ )	!HubertEncoderLayerStableLayerNormi  c                   > [         TU ]  5         [        UR                  UR                  UR
                  SUS9U l        [        R                  " UR                  5      U l
        [        R                  " UR                  UR                  S9U l        [        U5      U l        [        R                  " UR                  UR                  S9U l        [#        USS 5      b  [%        U5      U l        g S U l        g )NFr  r   rU  )r*   r+   r   r.   r  r  r  r,   r   r  r   rx   r   ry   r   r  r  getattrrS  adapter_layerr   s     rE   r+   *HubertEncoderLayerStableLayerNorm.__init__  s    (((00,,
 zz&"7"78,,v'9'9v?T?TU-f5 "V-?-?VEZEZ [6-t4@!7!?D!%DrM   rJ   r   r   c                    UnU R                  U5      nU R                  XUS9u  pnU R                  U5      nXA-   nXR                  U R	                  U5      5      -   nU R
                  b  XR                  U5      -   nU4nU(       a  Xu4-  nU$ r  )ry   r  r   r  r  re  r  s           rE   rK   )HubertEncoderLayerStableLayerNorm.forward+  s     &6)-L] *8 *
&Q ]3%5%(9(9$:O:OP]:^(__)),>,>},MMM "&GrM   )re  r  r   r  r  ry   r   )rO   rP   rQ   rR   r+   r   r   r   r   rK   rS   rT   rU   s   @rE   rb  rb    sC    &, 26"'	|| !.  	 rM   rb  c                   ~   ^  \ rS rSrU 4S jr    S	S jrS\\R                  S4   S\R                  4S jr	Sr
U =r$ )
HubertEncoderStableLayerNormiE  c                   > [         TU ]  5         Xl        [        U5      U l        [
        R                  " UR                  UR                  S9U l	        [
        R                  " UR                  5      U l        [
        R                  " [        UR                  5       Vs/ sH  n[!        U5      PM     sn5      U l        SU l        g s  snf r  )r*   r+   rC   r   r  r,   rx   r.   r   ry   r   r  r   r   r   r   rb  r!  r   r"  s      rE   r+   %HubertEncoderStableLayerNorm.__init__F  s    ;FC,,v'9'9v?T?TUzz&"7"78mm@EfF^F^@_`@_1.v6@_`
 ',# ar$  Nc                    U(       a  SOS nU(       a  SOS nUb4  UR                  S5      R                  SSUR                  S   5      nSX) '   U R                  UU5      nU R	                  U5      n	X-   nU R                  U5      n[        5       =(       d    [        U 5      n
U R                   H  nU(       a  Xa4-   n[        R                  " / 5      nU R                  =(       a    XR                  R                  :  nU(       a  U
(       a  U" XUS9nUS   nU(       a  SnU(       d  M|  UWS   4-   nM     U R                  U5      nU(       a  Xa4-   nU(       d  [        S XU4 5       5      $ [!        UUUS	9$ )
Nr(  r}   r   r   r   r  r)  c              3   ,   #    U H  oc  M  Uv   M     g 7frp   r(  r+  s     rE   r.  7HubertEncoderStableLayerNorm.forward.<locals>.<genexpr>  r0  r1  r2  )r5  r6  r   r7  r  r   r	   r
   r!  r   r8  r   rC   r9  ry   r   r   r:  s                  rE   rK   $HubertEncoderStableLayerNorm.forwardQ  s    #7BD$5b4%$2$<$<R$@$G$G1mNaNabcNd$e!45M01//

 #11-@%;]302R6LT6R[[E#$58H$H! #(**R.!]]Z/B[[EZEZ/ZN![ !&!Te! !.a 0 ,  &9]1=M<O&O#) !, 6 14D Dm]GZ$[mmm++*
 	
rM   r   rD  c                 r   Ub  U R                   R                  S:X  a  SU;   a  UnU$ S nU$ U R                   R                  S:X  a  [        XR                  5      nU$ U R                   R                  S:X  a+  [	        U[
        R                  5      (       a
  [        USS9nU$ [        XR                  5      nU$ rF  rJ  rL  s      rE   r7  .HubertEncoderStableLayerNorm._update_full_mask  rN  rM   rO  rP  )rO   rP   rQ   rR   r+   rK   r   r   r   r7  rS   rT   rU   s   @rE   rj  rj  E  sJ    	, "<
|ellD01 || rM   rj  c                       \ rS rSr% \\S'   SrSrSrSr	Sr
SrS rS\\R                  \4   4S jrS	\S
\R                  4S jrSrg)HubertPreTrainedModeli  rC   hubertr   Tc                    [        U[        R                  5      (       ak  UR                  R                  R                  SU R                  R                  S9  UR                  b%  UR                  R                  R                  5         gg[        U[        R                  [        R                  [        R                  45      (       aJ  UR                  R                  R                  5         UR                  R                  R                  S5        g[        U[        R                  5      (       Gai  [        5       (       a  SSKn[#        US5      (       a~  [#        US5      (       am  UR$                  R'                  UR(                  UR*                  /SS9   [        R,                  R/                  UR                  R                  5        SSS5        OUR$                  R'                  UR                  SS9   [        R,                  R/                  UR                  R                  5        SSS5        O3[        R,                  R/                  UR                  R                  5        UR                  b%  UR                  R                  R                  5         gg[        U[0        5      (       a7  [#        US	5      (       a%  UR2                  R                  R5                  5         gg[        U[6        5      (       aR  [#        US
5      (       a@  UR8                  R                  R                  SU R                  R:                  S-   -  5        ggg! , (       d  f       N= f! , (       d  f       GN= f)zInitialize the weightsr   )meanstdNg      ?r   r=   r<   r$   masked_spec_embedlayer_weightsr   )r   r,   r   r&   datanormal_rC   initializer_rangere   zero_rx   r   r4   fill_r-   r	   r7   r6   r8   r9   r=   r<   initkaiming_normal_HubertModelry  uniform_HubertForSequenceClassificationrz  r   )rB   r   r7   s      rE   _init_weights#HubertPreTrainedModel._init_weights  sV   fbii(( MM&&CT[[5R5R&S{{&  &&( 'r||R^^ LMMKK""$MM$$S)		**)++ 6:..76:3N3N"::FOOV__;]mn:o//0B0BC po #::6==XY:Z//0B0BC [Z ''(:(:;{{&  &&( ',,v233((--668 4 ?@@v//$$))//t{{7T7TWX7X0YZ 0 A po [Zs   4M94M!
M!
M0input_lengthsc                     S n[        U R                  R                  U R                  R                  5       H  u  p4U" XU5      nM     U$ )z8
Computes the output length of the convolutional layers
c                 8    [         R                  " X-
  USS9S-   $ )Nfloor)rounding_moder   )r   div)input_lengthr    rd   s      rE   _conv_out_lengthPHubertPreTrainedModel._get_feat_extract_output_lengths.<locals>._conv_out_length  s      99\7wWZ[[[rM   )ziprC   ri   rj   )rB   r  r  r    rd   s        rE    _get_feat_extract_output_lengths6HubertPreTrainedModel._get_feat_extract_output_lengths  sG    
	\
 $'t{{'>'>@W@W#XK,]PM $Y rM   feature_vector_lengthr   c                    U R                  UR                  S5      5      R                  [        R                  5      nUR
                  S   n[        R                  " XA4UR                  UR                  S9nSU[        R                  " UR
                  S   UR                  S9US-
  4'   UR                  S/5      R                  S5      R                  S/5      R                  5       nU$ )Nr}   r   )rK  devicer   )r  )r  sumtor   longr   zerosrK  r  arangeflipcumsumr   )rB   r  r   output_lengths
batch_sizes        rE   "_get_feature_vector_attention_mask8HubertPreTrainedModel._get_feature_vector_attention_mask  s    >>~?Q?QRT?UVYYZ_ZdZde#))!,
/~7K7KTbTiTi
 uv^%9%9!%<^EZEZ[]kno]opq',,bT299"=BBB4HMMOrM   r(  N)rO   rP   rQ   rR   r   __annotations__base_model_prefixmain_input_namesupports_gradient_checkpointing_supports_flash_attn_supports_sdpa_supports_flex_attnr  r   r   
LongTensorr   r  r  rS   r(  rM   rE   rt  rt    sh     $O&*#N[BeEDTDTVYDY>Z 
 
]b]m]m 
rM   rt  r   	mask_probmask_length	min_masksr   c           	        ^^^^^ U u  nmTS:  a  [        S5      eTT:  a  [        ST ST S35      e[        R                  R                  S5      R	                  5       mUUUUU4S jnUb-  UR                  5       R                  S5      R                  5       O[        U5       Vs/ sH  nTPM     snn[        R                  " UT4[        S	9n	/ n
U" T5      nUS
:X  a  U	$ U H  nU" U5      n[        R                  R                  [        R                  " UTS-
  -
  5      USS9n[        U5      S
:X  a  TS-
  nOUS
   n[        R                  " U[        R                  " X-
  [        R                   S	9U-  /5      nU
R#                  U5        M     [        R$                  " U
5      n
[        R&                  " U
SS2SS2S4   X[T45      n
U
R)                  X[T-  5      n
[        R                  " T5      SSSS24   n[        R&                  " UX[T45      R)                  X[T-  5      nU
U-   n
U
R+                  5       TS-
  :  a  TS-
  XTS-
  :  '   [        R,                  " XSS5        U	$ s  snf )a2  
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://huggingface.co/papers/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.

Args:
    shape: The shape for which to compute masks. This should be of a tuple of size 2 where
           the first element is the batch size and the second element is the length of the axis to span.
    mask_prob:  The percentage of the whole axis (between 0 and 1) which will be masked. The number of
                independently generated mask spans of length `mask_length` is computed by
                `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
                actual percentage will be smaller.
    mask_length: size of the mask
    min_masks: minimum number of masked spans
    attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
                    each batch dimension.
r   z&`mask_length` has to be bigger than 0.zO`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: z and `sequence_length`: `c                    > [        TU -  T-  T-   5      n[        UT5      nUT-  T:  a  TT-  nU TS-
  -
  U:  a  [        U TS-
  -
  S5      nU$ )z;Given input length, compute how many spans should be maskedr   r   )r   max)r  num_masked_spanepsilonr  r  r  sequence_lengths     rE   compute_num_masked_span6_compute_mask_indices.<locals>.compute_num_masked_span  so    i,6DwNOoy9 [(?:-<O ;?+o=!,+/"BAFOrM   Nr}   rK  r   F)replace)r   nprandomr8  itemdetachr  tolistr   r  r   choicer  lenconcatenateonesint32appendarraybroadcast_tor   r  put_along_axis)r   r  r  r   r  r  r  r  r  spec_aug_maskspec_aug_mask_idxsmax_num_masked_spanr  r  spec_aug_mask_idxdummy_mask_idxoffsetsr  r  s    `` `            @@rE   _compute_mask_indicesr    s   0 #(JQABB_$]^i]j&&7q:
 	
 iinnQ$$&G $ % 	##B'..0',Z'89'8!o'89  HHj/:$GM1/Ba%1,? II,,IIlkAo67RW - 
  !Q& -q0N.q1NNN(;(MUWU]U] ^ao op
 	!!"34/ &2 "45 1a:&+(V ,33JVa@ab ii$T4]3Goog
'UV^^+5G ,g5 /A"55GVYZGZ!0CCD mB?w :s   (I/c                   >  ^  \ rS rSrS\4U 4S jjr  SS\R                  S\\R                     S\\R                     4S jjr
\     SS\\R                     S\\R                     S\\R                     S	\\   S
\\   S\\   S\\\4   4S jj5       rSrU =r$ )r  id  rC   c                   > [         TU ]  U5        Xl        [        U5      U l        [        U5      U l        UR                  S:  d  UR                  S:  aG  [        R                  " [        R                  " UR                  5      R                  5       5      U l        UR                   (       a  [#        U5      U l        O['        U5      U l        U R)                  5         g )Nr   )r*   r+   rC   r   feature_extractorr   feature_projectionmask_time_probmask_feature_probr,   	Parameterr   r   r.   r  ry  do_stable_layer_normrj  encoderr  	post_initr   s     rE   r+   HubertModel.__init__f  s     !5f!="9&"A   3&&*B*BS*H%'\\%,,v?Q?Q2R2[2[2]%^D"&&7?DL(0DL 	rM   rJ   mask_time_indicesr   c                    [        U R                  SS5      (       d  U$ UR                  5       u  pEnUb(  U R                  R	                  UR
                  5      X'   OU R                  R                  S:  a  U R                  (       a  [        XE4U R                  R                  U R                  R                  UU R                  R                  S9n[        R                  " X!R                  [        R                  S9nU R                  R	                  UR
                  5      X'   U R                  R                  S:  a  U R                  (       a  [        XF4U R                  R                  U R                  R                   U R                  R"                  S9n[        R                  " XqR                  [        R                  S9nUSS2S4   R%                  SUS5      nSX'   U$ )	z
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://huggingface.co/papers/1904.08779).
apply_spec_augmentTNr   )r  r  r   r  )r  rK  )r  r  r  r}   )rd  rC   r   ry  r  rK  r  r   r  mask_time_lengthmask_time_min_masksr   rQ  r  r   r  mask_feature_lengthmask_feature_min_masksexpand)rB   rJ   r  r   r  r  r.   mask_feature_indicess           rE   _mask_hidden_statesHubertModel._mask_hidden_statesx  s    t{{$8$??   4A3E3E3G0
[(/3/E/E/H/HI\I\/]M,[[''!+ 5-++44 KK88-++99! !&->G[G[chcmcm n/3/E/E/H/HI\I\/]M,;;((1,#8)++77 KK;;++<<	$  $)<<0DMaMainisis#t #74#@#G#GO]_#` 23M/rM   r   r   r%  r&  r   c                    Ub  UOU R                   R                  nUb  UOU R                   R                  nUb  UOU R                   R                  nU R	                  U5      nUR                  SS5      nUb  U R                  UR                  S   U5      nU R                  U5      nU R                  XS9nU R                  UUUUUS9n	U	S   nU(       d	  U4U	SS -   $ [        UU	R                  U	R                  S9$ )a  
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
    Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
    masked extracted features in *config.proj_codevector_dim* space.

Example:

```python
>>> from transformers import AutoProcessor, HubertModel
>>> from datasets import load_dataset

>>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
>>> model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")


>>> def map_to_array(example):
...     example["speech"] = example["audio"]["array"]
...     return example


>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)

>>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values  # Batch size 1
>>> hidden_states = model(input_values).last_hidden_state
```Nr   r   )r  r   r   r%  r&  r   r2  )rC   r   r%  use_return_dictr  rH   r  r   r  r  r  r   rJ   r4  )
rB   r   r   r  r   r%  r&  extract_featuresrJ   encoder_outputss
             rE   rK   HubertModel.forward  s)   H 2C1N-TXT_T_TqTq$8$D $++JjJj 	 &1%<k$++B]B]11,?+55a;%!DDEUE[E[\]E^`noN//0@A000d,,)/!5# ' 
 (*!#oab&999+)77&11
 	
rM   )rC   r  r  r  ry  r)  NNNNN)rO   rP   rQ   rR   r   r+   r   r`  r   r  r  r   r   r   r   r   r   rK   rS   rT   rU   s   @rE   r  r  d  s    | * :>59	,((, $E$5$56, !!1!12	,\  269=,0/3&*D
u||,D
 !.D
 $E$5$56	D

 $D>D
 'tnD
 d^D
 
uo%	&D
 D
rM   r  zn
    Hubert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).
    )custom_introc                      ^  \ rS rSrSS\\   4U 4S jjjrS rS rS r	S r
\     SS\\R                     S	\\R                     S
\\   S\\   S\\   S\\R                     S\\\4   4S jj5       rSrU =r$ )HubertForCTCi  target_langc                   > [         TU ]  U5        [        U5      U l        [        R
                  " UR                  5      U l        X l        UR                  c  [        SU R                   S35      e[        US5      (       a  UR                  (       a  UR                  OUR                  n[        R                   " X1R                  5      U l        U R%                  5         g)a  
target_lang (`str`, *optional*):
    Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or
    adapter.<lang>.bin. Only relevant when using an instance of [`HubertForCTC`] with adapters. Uses 'eng' by
    default.
NzYou are trying to instantiate z with a configuration that does not define the vocabulary size of the language model head. Please instantiate the model as follows: `HubertForCTC.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of your model's configuration.add_adapter)r*   r+   r  ru  r,   r   final_dropoutr   r  
vocab_sizer   rD   r6   r  output_hidden_sizer.   r   lm_headr  )rB   rC   r  r  rD   s       rE   r+   HubertForCTC.__init__  s     	 !&)zz&"6"67&$00@ AH H  *1)G)GFL^L^F%%djdvdv 	 yy!35F5FG 	rM   c                     U R                   nUb'  [        U R                  SS5      c  [        SU S35      eUc.  [        U R                  SS5      b  [        R                  S5        gUb  U R                  USS9  gg)a  
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
passing `target_lang=...` to `from_pretrained(...)`.

This method is **not** supposed to be called by the user and is prone to be changed in the future.
NrU  zCannot pass `target_lang`: z- if `config.adapter_attn_dim` is not defined.z)By default `target_lang` is set to 'eng'.T)
force_load)r  rd  rC   r   loggerinfoload_adapter)rB   r  s     rE   tie_weightsHubertForCTC.tie_weights  s     &&"wt{{<NPT'U']:;-Gtuvv WT[[:Ld%S%_KKCD$kd; %rM   c                 Z    [         R                  " S[        5        U R                  5         g)
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. Please use the equivalent `freeze_feature_encoder` method instead.NwarningswarnFutureWarningfreeze_feature_encoderrB   s    rE   freeze_feature_extractor%HubertForCTC.freeze_feature_extractor)  '    
 	Q	

 	##%rM   c                 L    U R                   R                  R                  5         gr  Nru  r  r   r  s    rE   r  #HubertForCTC.freeze_feature_encoder5      
 	%%88:rM   c                 T    U R                   R                  5        H
  nSUl        M     gz
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
FNru  r   r   r   s     rE   freeze_base_modelHubertForCTC.freeze_base_model<  #    
 [[++-E"'E .rM   r   r   r   r%  r&  labelsr   c                    Ub  UOU R                   R                  nUbJ  UR                  5       U R                   R                  :  a"  [	        SU R                   R                   35      eU R                  UUUUUS9nUS   nU R                  U5      nU R                  U5      n	Sn
UGbX  Ub  UO"[        R                  " U[        R                  S9nU R                  UR                  S5      5      R                  [        R                  5      nUS:  nUR                  S5      nUR                  U5      n[        R                   R#                  U	S[        R$                  S9R'                  SS5      n[        R(                  R*                  R-                  S	S
9   [        R                   R/                  UUUUU R                   R0                  U R                   R2                  U R                   R4                  S9n
SSS5        U(       d  U	4U[6        S -   nU
b  U
4U-   $ U$ [9        XUR:                  UR<                  S9$ ! , (       d  f       NL= f)a  
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
    Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
    the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
    All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
    config.vocab_size - 1]`.
Nz$Label values must be <= vocab_size: r  r   r  r}   )r(   rK  r   F)enabled)blank	reductionzero_infinitylosslogitsrJ   r4  )rC   r  r  r  r   ru  r   r  r   	ones_liker  r  r  r  masked_selectr,   r   log_softmaxfloat32rH   backendscudnnflagsctc_losspad_token_idctc_loss_reductionctc_zero_infinity_HIDDEN_STATES_START_POSITIONr   rJ   r4  )rB   r   r   r   r%  r&  r  r  rJ   r  r  r  labels_masktarget_lengthsflattened_targets	log_probsoutputs                    rE   rK   HubertForCTC.forwardD  s   " &1%<k$++B]B]&**,$++2H2H"HCDKKDZDZC[\]]++)/!5#  
  
]3m, #1"<%//R^fkfpfpBq  !AA.BTBTUWBXY\\]b]g]ghM !A+K(__R0N & 4 4[ A 11&b1V``abdefI%%++E+:}}--%!"++22"kk<<"&++"?"? .  ; Y)F)G!HHF)-)9TGf$EvEG4I4IV]VhVh
 	
 ;:s   A H??
I)r   ru  r  r  rp   r  )rO   rP   rQ   rR   r   r  r+   r  r  r  r  r   r   r   r   r   r   r   rK   rS   rT   rU   s   @rE   r  r    s    HSM  :<*
&;(  26,0/3&*)-D
u||,D
 !.D
 $D>	D

 'tnD
 d^D
 &D
 
un$	%D
 D
rM   r  z
    Hubert Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like
    SUPERB Keyword Spotting.
    c                      ^  \ rS rSrU 4S jrS rS rS r\     SS\	\
R                     S\	\
R                     S\	\   S	\	\   S
\	\   S\	\
R                     S\\\4   4S jj5       rSrU =r$ )r  i  c                 "  > [         TU ]  U5        [        US5      (       a  UR                  (       a  [	        S5      e[        U5      U l        UR                  S-   nUR                  (       a2  [        R                  " [        R                  " U5      U-  5      U l        [        R                  " UR                  UR                   5      U l        [        R                  " UR                   UR$                  5      U l        U R)                  5         g )Nr  z]Sequence classification does not support the use of Hubert adapters (config.add_adapter=True)r   )r*   r+   r6   r  r   r  ru  r   use_weighted_layer_sumr,   r  r   r  rz  r   r.   classifier_proj_size	projector
num_labels
classifierr  )rB   rC   
num_layersrD   s      rE   r+   (HubertForSequenceClassification.__init__  s     6=))f.@.@o  "&)--1
((!#ejj.Dz.Q!RD6#5#5v7R7RS))F$?$?ARARS 	rM   c                 Z    [         R                  " S[        5        U R                  5         g)z
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
r  Nr  r  s    rE   r  8HubertForSequenceClassification.freeze_feature_extractor  r  rM   c                 L    U R                   R                  R                  5         gr  r	  r  s    rE   r  6HubertForSequenceClassification.freeze_feature_encoder  r  rM   c                 T    U R                   R                  5        H
  nSUl        M     gr  r  r   s     rE   r  1HubertForSequenceClassification.freeze_base_model  r  rM   r   r   r   r%  r&  r  r   c                 0   Ub  UOU R                   R                  nU R                   R                  (       a  SOUnU R                  UUUUUS9nU R                   R                  (       ai  U[           n[
        R                  " USS9n[        R                  R                  U R                  SS9n	XR                  SSS5      -  R                  SS9nOUS   nU R                  U5      nUc  UR                  SS9n
OU R                  UR                   S   U5      nUR#                  S5      R%                  SSUR                   S   5      nS	X) '   UR                  SS9UR                  SS9R                  SS5      -  n
U R'                  U
5      nSnUbF  [)        5       nU" UR                  SU R                   R*                  5      UR                  S5      5      nU(       d  U4U[        S -   nUb  U4U-   $ U$ [-        UUUR.                  UR0                  S
9$ )a  
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
    Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
    into an array of type `list[float]`, a `numpy.ndarray` or a `torch.Tensor`, *e.g.* via the torchcodec library
    (`pip install torchcodec`) or the soundfile library (`pip install soundfile`).
    To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion
    into a tensor of type `torch.FloatTensor`. See [`HubertProcessor.__call__`] for details.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
    Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
    config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
    `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
NTr  r   r   r}   r   r   r   r  )rC   r  r/  ru  r&  r   stackr,   r   r   rz  r   r  r1  rw  r  r   r5  r6  r3  r   r2  r   rJ   r4  )rB   r   r   r   r%  r&  r  r  rJ   norm_weightspooled_outputpadding_maskexpand_padding_maskr  r  loss_fctr+  s                    rE   rK   'HubertForSequenceClassification.forward  s   . &1%<k$++B]B]'+{{'I'ItOc++)/!5#  
 ;;--#$ABM!KK1=M==001C1C0LL*->->r1a-HHMMRSMTM#AJM}5!)..1.5MBB=CVCVWXCY[ijL"."8"8"<"C"CAq-J]J]^_J`"a25M./)--!-4|7G7GA7G7N7S7STVXY7ZZM/')HFKKDKK,B,BCV[[QS_UDY)F)G!HHF)-)9TGf$EvE'!//))	
 	
rM   )r3  ru  rz  r1  r  )rO   rP   rQ   rR   r+   r  r  r  r   r   r   r   r   r   r   r   rK   rS   rT   rU   s   @rE   r  r    s    "
&;(  26,0/3&*)-B
u||,B
 !.B
 $D>	B

 'tnB
 d^B
 &B
 
u..	/B
 B
rM   r  )r  r  r  rt  )Nr   Nr\   )Ir  typingr   r   r   numpyr  r   torch.nnr,   r   activationsr   integrations.deepspeedr	   integrations.fsdpr
   modeling_attn_mask_utilsr   r   modeling_flash_attention_utilsr   modeling_layersr   modeling_outputsr   r   r   modeling_utilsr   r   processing_utilsr   r5   r   r   r   configuration_hubertr   integrations.flex_attentionr   
get_loggerrO   r  Moduler   r?   r`   rt   r   r   r   r   r   r   r   r   r
  r  rS  rb  rj  rt  r   r   r  ndarrayr  r  r&  r  r  __all__r(  rM   rE   <module>rV     s  ,  , ,    % ! @ 7 g B 9 Y Y F & J J .  !!J 
		H	%/BII /d !; *9 69 0#299 #Lbii 0  $(,%II%<<% 
% <<	%
 U\\*% e_% % %%<U/bii U/p		 0!3 !HZBII ZzRYY 2+(B +\^299 ^B CO C CT 26tc?tt t U--.	t
 t ZZtn F
' F
 F
R !"  
S
( S

S
l p
&; p
p
f frM   