
    <hI                        S r SSKJrJr  SSKrSSKJs  Jr  SSK	rSSKJr  SSK
Jr  SSKJrJr  SSKJrJr  SS	KJr  SS
KJrJr  SSKJr  SSKJrJr  SSKJr  SSKJrJ r J!r!J"r"J#r#J$r$J%r%J&r&J'r'  SSK(J)r)  \RT                  " \+5      r,   S0S\\RZ                  \.\RZ                     S4   S\\/   S\\RZ                     S\\RZ                  \/4   4S jjr0 " S S\Rb                  5      r2 " S S\Rb                  5      r3 " S S\&5      r4 " S S\5      r5 " S S \5      r6 " S! S"\'5      r7 " S# S$\%5      r8 " S% S&\$5      r9 " S' S(\ 5      r: " S) S*\"5      r; " S+ S,\#5      r< " S- S.\!5      r=/ S/Qr>g)1zPyTorch Mixtral model.    )OptionalUnionN)nn   )ACT2FN)CacheDynamicCache)create_causal_mask!create_sliding_window_causal_mask)GradientCheckpointingLayer)MoeCausalLMOutputWithPastMoeModelOutputWithPast)Unpack)TransformersKwargslogging)OutputRecorder   )	MistralAttentionMistralForCausalLMMistralForQuestionAnswering MistralForSequenceClassificationMistralForTokenClassificationMistralModelMistralPreTrainedModelMistralRMSNormMistralRotaryEmbedding   )MixtralConfiggate_logitsnum_expertsattention_maskreturnc                    U b  [        U [        5      (       d  g[        U [        5      (       aB  U S   R                  n[        R                  " U  Vs/ sH  oUR                  U5      PM     snSS9n[        R                  R                  R                  WSS9n[        R                  " XrSS9u  p[        R                  R                  R                  X5      n
Uc:  [        R                  " U
R                  5       SS9n[        R                  " USS9nGOUR                  u  pUR                  S   X-  -  nUSSS2SS2SS4   R                  XXU45      R                  SX!5      R                  W5      n[        R                   " U
R                  5       U-  SS9[        R                   " USS9-  nUSSS2SS2S4   R                  XX45      R                  SU5      R                  U5      n[        R                   " UU-  SS9[        R                   " USS9-  n[        R                   " XR#                  S5      -  5      nUU-  $ s  snf )ax  
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.

See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.

Args:
    gate_logits:
        Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
        shape [batch_size X sequence_length, num_experts].
    num_experts:
        Number of experts
    top_k:
        The number of experts to route per-token, can be also interpreted as the `top-k` routing
        parameter.
    attention_mask (`torch.Tensor`, *optional*):
        The attention_mask used in forward function
        shape [batch_size X sequence_length] if not None.

Returns:
    The auxiliary loss.
Nr   dim)
isinstancetupledevicetorchcattor   
functionalsoftmaxtopkone_hotmeanfloatshapeexpandreshapesum	unsqueeze)r   r    top_kr!   compute_device
layer_gateconcatenated_gate_logitsrouting_weights_selected_expertsexpert_masktokens_per_expertrouter_prob_per_expert
batch_sizesequence_lengthnum_hidden_layersexpert_attention_mask router_per_expert_attention_maskoverall_losss                      c/var/www/html/shao/venv/lib/python3.13/site-packages/transformers/models/mixtral/modular_mixtral.pyload_balancing_loss_funcrI   6   s+   : *[%"@"@+u%%$Q..#(99^i-j^iPZmmN.K^i-jpq#r hh))112JPR1SO**_DA((%%--.>LK!JJ{'8'8':B "'O!C&4&:&:#
4::1=*B^_ 4AtT12V&OKXYWR,R	 	 "IIk&7&7&9<Q&QWXY\a\e\e!q]
 
 4At+,V&OQRWR%R	 	) "'?=]+]cd!ehmhqhq,!i
 "
 99.1Q1QRS1TTUL+%%[ .ks   I
c                   6   ^  \ rS rSrS\4U 4S jjrS rSrU =r$ )MixtralBlockSparseTop2MLP   configc                   > [         TU ]  5         UR                  U l        UR                  U l        [        R                  " U R
                  U R                  SS9U l        [        R                  " U R                  U R
                  SS9U l	        [        R                  " U R
                  U R                  SS9U l
        [        UR                     U l        g NF)bias)super__init__intermediate_sizeffn_dimhidden_size
hidden_dimr   Linearw1w2w3r   
hidden_actact_fnselfrM   	__class__s     rH   rR   "MixtralBlockSparseTop2MLP.__init__   s    // ,,))DOOT\\F))DLL$//F))DOOT\\FV../    c                     U R                  U R                  U5      5      U R                  U5      -  nU R                  U5      nU$ N)r\   rX   rZ   rY   )r^   hidden_statescurrent_hidden_statess      rH   forward!MixtralBlockSparseTop2MLP.forward   s>     $DGGM,B CdggmF\ \ $(= >$$ra   )r\   rT   rV   rX   rY   rZ   )	__name__
__module____qualname____firstlineno__r   rR   rf   __static_attributes____classcell__r_   s   @rH   rK   rK      s    	0} 	0% %ra   rK   c                   f   ^  \ rS rSrSrU 4S jrS\R                  S\R                  4S jrSr	U =r
$ )MixtralSparseMoeBlock   a  
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accommodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
c                   > [         TU ]  5         UR                  U l        UR                  U l        UR                  U l        UR                  U l	        [        R                  " U R                  U R                  SS9U l        [        R                  " [        U R                  5       Vs/ sH  n[        U5      PM     sn5      U l        UR"                  U l        g s  snf rO   )rQ   rR   rU   rV   rS   rT   num_local_expertsr    num_experts_per_tokr8   r   rW   gate
ModuleListrangerK   expertsrouter_jitter_noisejitter_noise)r^   rM   r=   r_   s      rH   rR   MixtralSparseMoeBlock.__init__   s     ,,//!33//
 IIdoot/?/?eL	}}QVW[WgWgQh%iQhA&?&GQh%ij #66 &js   *Crd   r"   c                    UR                   u  p#nU R                  (       aS  U R                  S:  aC  U[        R                  " U5      R                  SU R                  -
  SU R                  -   5      -  nUR                  SU5      nU R                  U5      n[        R                  " US[        R                  S9n[        R                  " X`R                  SS9u  pgXfR                  SSS9-  nUR                  UR                  5      n[        R                   " X#-  U4UR                  UR"                  S	9n[        R$                  R&                  R)                  XpR*                  S
9R-                  SSS5      n	[        R.                  " U	R                  SS9S5      R1                  5       n
U
 H  nU R2                  U   n[        R4                  " X   R7                  S5      5      u  pUSU4   R9                  SU5      nU" U5      XnUS4   -  nUR;                  SUUR                  UR                  5      5        M     UR9                  X#U5      nX4$ ) r   g      ?r&   r   )r%   dtyper$   T)r%   keepdim)r~   r)   )num_classesr   )r&   N)r3   trainingrz   r*   
empty_likeuniform_viewru   Fr.   r2   r/   r8   r6   r,   r~   zerosr)   r   r-   r0   r    permutegreaternonzerorx   wheresqueezer5   
index_add_)r^   rd   rB   rC   rV   router_logitsr<   r>   final_hidden_statesr?   expert_hitted
expert_idxexpert_layeridxtop_xcurrent_statere   s                    rH   rf   MixtralSparseMoeBlock.forward   s   2?2E2E/
Z==T..2U--m<EEcDL]L]F]_beievev_vwwM%**2z:		-0))MqL,1JJ

XZ,[)..2t.DD),,]-@-@A#kk):6m>Q>QZgZnZn
 hh))112BP`P`1aiijkmnpqrkoo(o&CQGOOQ'J<<
3L[%<%D%DQ%GHJC *$+6>>r:NM$0$?/Y\^bRbBc$c!  **1e5J5M5MmNaNa5bc ( 299*Wab"11ra   )rx   rT   ru   rV   rz   r    r8   )rh   ri   rj   rk   __doc__rR   r*   Tensorrf   rl   rm   rn   s   @rH   rp   rp      s-    	7%2U\\ %2ell %2 %2ra   rp   c                       \ rS rSrSrg)MixtralRMSNorm    Nrh   ri   rj   rk   rl   r   ra   rH   r   r          ra   r   c                       \ rS rSrSrg)MixtralAttention   r   Nr   r   ra   rH   r   r      r   ra   r   c                   8  ^  \ rS rSrS\S\4U 4S jjr    SS\R                  S\	\R                  \R                  4   S\
\R                     S\
\R                     S	\
\	\R                        S
\
\R                     S\\   S\R                  4S jjrSrU =r$ )MixtralDecoderLayer   rM   	layer_idxc                   > [         TU ]  5         UR                  U l        [        X5      U l        [        U5      U l        [        UR                  UR                  S9U l	        [        UR                  UR                  S9U l
        g )N)eps)rQ   rR   rU   r   	self_attnrp   block_sparse_moer   rms_norm_epsinput_layernormpost_attention_layernorm)r^   rM   r   r_   s      rH   rR   MixtralDecoderLayer.__init__   sk    !--)&< 5f =-f.@.@fFYFYZ(6v7I7IvObOb(c%ra   rd   position_embeddingsr!   position_idspast_key_valuecache_positionkwargsr"   c           
          UnU R                  U5      nU R                  " SUUUUUUS.UD6u  pX-   nUnU R                  U5      nU R                  U5      u  pX-   nU$ )N)rd   r   r!   r   r   r   r   )r   r   r   r   )
r^   rd   r   r!   r   r   r   r   residualr=   s
             rH   rf   MixtralDecoderLayer.forward   s     !,,];  >> 
' 3)%))
 
 !0 !55mD00? 0ra   )r   rU   r   r   r   )NNNN)rh   ri   rj   rk   r   intrR   r*   r   r(   r   
LongTensorr   r   FloatTensorrf   rl   rm   rn   s   @rH   r   r      s    d} d d 26378<59 ||  #5<<#=>  !.	 
 u//0  !u||!45  !!1!12  +,  
		   ra   r   c                       \ rS rSrSrg)MixtralRotaryEmbeddingi  r   Nr   r   ra   rH   r   r     r   ra   r   c                   .    \ rS rSrSr\" \SS9\\S.r	Sr
g)MixtralPreTrainedModeli  Fr   )index)r   rd   
attentionsr   N)rh   ri   rj   rk   _can_compile_fullgraphr   rp   r   r   _can_record_outputsrl   r   ra   rH   r   r     s!    "'(=QG,&ra   r   c                       \ rS rSr       SS\\R                     S\\R                     S\\R                     S\\   S\\R                     S\\
   S	\\R                     S
\\   S\4S jjrSrg)MixtralModeli   N	input_idsr!   r   past_key_valuesinputs_embeds	use_cacher   r   r"   c                 z   US L US L-  (       a  [        S5      eU(       a  Uc
  [        5       nUc  U R                  U5      nUcD  Ub  UR                  5       OSn	[        R
                  " XUR                  S   -   UR                  S9nUc  UR                  S5      nU R                  R                  c  [        O[        n
U
" U R                  UUUUUS9nUnU R                  X5      nU R                  S U R                  R                    H  nU" U4UUUUUUS.UD6nM     U R!                  U5      n[#        UUS9$ )Nz:You must specify exactly one of input_ids or inputs_embedsr   r   )r)   )rM   input_embedsr!   r   r   r   )r   r!   r   r   r   r   )last_hidden_stater   )
ValueErrorr	   embed_tokensget_seq_lengthr*   aranger3   r)   r7   rM   sliding_windowr
   r   
rotary_emblayersrD   normr   )r^   r   r!   r   r   r   r   r   r   past_seen_tokensmask_functioncausal_maskrd   r   decoder_layers                  rH   rf   MixtralModel.forward!  sh    -t";<YZZ0*nO  --i8M!CRC^==?de"\\ ]5H5H5K"KTaThThN )33A6L.2kk.H.H.P*Vw#;;&))+%
 & #oomJ![[)H4;;+H+HIM)	$7*).#-	 	M J 		-0%++
 	
ra   r   )NNNNNNN)rh   ri   rj   rk   r   r*   r   r   r   r   boolr   r   r   rf   rl   r   ra   rH   r   r      s     151537+/59$(59<
E,,-<
 !.<
 u//0	<

 "%<
   1 12<
 D><
 !!1!12<
 +,<
 
 <
 <
ra   r   c                   R  ^  \ rS rSrS/rU 4S jr          SS\\R                     S\\R                     S\\R                     S\\
   S\\R                     S	\\R                     S
\\   S\\   S\\R                     S\\\R                  4   S\\   S\4S jjrSrU =r$ )MixtralForCausalLMi`  zlm_head.weightc                    > [         TU ]  U5        [        U5      U l        UR                  U l        UR
                  U l        UR                  U l        g rc   )rQ   rR   r   modelrouter_aux_loss_coefrs   r    rt   r]   s     rH   rR   MixtralForCausalLM.__init__c  sF     !&)
$*$?$?!!33#)#=#= ra   r   r!   r   r   r   labelsr   output_router_logitsr   logits_to_keepr   r"   c                 ~   Ub  UOU R                   R                  nU R                  " SUUUUUUUU	S.UD6nUR                  n[	        U
[
        5      (       a  [        U
* S5      OU
nU R                  USS2USS24   5      nSnUb  U R                  " XU R                  40 UD6nSnU(       aZ  [        UR                  U R                  U R                  U5      nUb+  UU R                  UR                  UR                   5      -  -  n[#        UUUUR$                  UR&                  UR(                  UR                  S9$ )a  
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
    Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
    config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
    (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

Example:

```python
>>> from transformers import AutoTokenizer, MixtralForCausalLM

>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```N)r   r!   r   r   r   r   r   r   )lossaux_losslogitsr   rd   r   r   r   )rM   r   r   r   r'   r   slicelm_headloss_function
vocab_sizerI   r   r    rt   r   r,   r)   r   r   rd   r   )r^   r   r!   r   r   r   r   r   r   r   r   r   outputsrd   slice_indicesr   r   r   s                     rH   rf   MixtralForCausalLM.forwardj  sU   L %9$D $++JjJj 	
 +/** 
+
)%+'!5)
+
 
+
  118B>SV8W8W~ot4]kmA}a,?@A%%fdooPPD/%%  ((	H !11HKK4LLL(#33!//))!//
 	
ra   )r   r    rt   r   )
NNNNNNNNNr   )rh   ri   rj   rk   _tied_weights_keysrR   r   r*   r   r   r   r   r   r   r   r   r   r   rf   rl   rm   rn   s   @rH   r   r   `  s   *+> 151537+/59-1$(/35934R
E,,-R
 !.R
 u//0	R

 "%R
   1 12R
 ))*R
 D>R
 'tnR
 !!1!12R
 c5<</0R
 +,R
 
#R
 R
ra   r   c                       \ rS rSrSrg) MixtralForSequenceClassificationi  r   Nr   r   ra   rH   r   r     r   ra   r   c                       \ rS rSrSrg)MixtralForTokenClassificationi  r   Nr   r   ra   rH   r   r     r   ra   r   c                       \ rS rSrSrg)MixtralForQuestionAnsweringi  r   Nr   r   ra   rH   r   r     r   ra   r   )r   r   r   r   r   r   )Nr   N)?r   typingr   r   r*   torch.nn.functionalr   r-   r   torch.utils.checkpointactivationsr   cache_utilsr   r	   masking_utilsr
   r   modeling_layersr   modeling_outputsr   r   processing_utilsr   utilsr   r   utils.genericr   mistral.modeling_mistralr   r   r   r   r   r   r   r   r   configuration_mixtralr   
get_loggerrh   loggerr   r(   r   rI   ModulerK   rp   r   r   r   r   r   r   r   r   r   r   __all__r   ra   rH   <module>r     sw  (  "      ! . R 9 Q & 0 +
 
 
 1 
		H	%
 "&
-1	O&u||U5<<%8$>?O&#O& U\\*	O&
 5<<O&d%		 %$@2BII @2F	^ 		' 	+4 +\	3 	3 =
< =
@\
+ \
~	'G 		$A 		"= 	ra   