
    <h                     \    S SK Jr  S SKJr  \R                  " \5      r " S S\5      rS/rg)   )PretrainedConfig)loggingc                   t   ^  \ rS rSrSrSr/ SQSSSSSS	S	S
4	S\\   S\S\S\S\S\S\S\4U 4S jjjr	Sr
U =r$ )SuperPointConfig   aY  
This is the configuration class to store the configuration of a [`SuperPointForKeypointDetection`]. It is used to instantiate a
SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SuperPoint
[magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Args:
    encoder_hidden_sizes (`List`, *optional*, defaults to `[64, 64, 128, 128]`):
        The number of channels in each convolutional layer in the encoder.
    decoder_hidden_size (`int`, *optional*, defaults to 256): The hidden size of the decoder.
    keypoint_decoder_dim (`int`, *optional*, defaults to 65): The output dimension of the keypoint decoder.
    descriptor_decoder_dim (`int`, *optional*, defaults to 256): The output dimension of the descriptor decoder.
    keypoint_threshold (`float`, *optional*, defaults to 0.005):
        The threshold to use for extracting keypoints.
    max_keypoints (`int`, *optional*, defaults to -1):
        The maximum number of keypoints to extract. If `-1`, will extract all keypoints.
    nms_radius (`int`, *optional*, defaults to 4):
        The radius for non-maximum suppression.
    border_removal_distance (`int`, *optional*, defaults to 4):
        The distance from the border to remove keypoints.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

Example:
```python
>>> from transformers import SuperPointConfig, SuperPointForKeypointDetection

>>> # Initializing a SuperPoint superpoint style configuration
>>> configuration = SuperPointConfig()
>>> # Initializing a model from the superpoint style configuration
>>> model = SuperPointForKeypointDetection(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
superpoint)@   r	      r
      A   g{Gzt?   g{Gz?encoder_hidden_sizesdecoder_hidden_sizekeypoint_decoder_dimdescriptor_decoder_dimkeypoint_thresholdmax_keypoints
nms_radiusborder_removal_distancec
                    > Xl         X l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl        [        TU ](  " S0 U
D6  g )N )r   r   r   r   r   r   r   r   initializer_rangesuper__init__)selfr   r   r   r   r   r   r   r   r   kwargs	__class__s              o/var/www/html/shao/venv/lib/python3.13/site-packages/transformers/models/superpoint/configuration_superpoint.pyr   SuperPointConfig.__init__?   sJ     %9!#6 $8!&<#"4*$'>$!2"6"    )	r   r   r   r   r   r   r   r   r   )__name__
__module____qualname____firstlineno____doc__
model_typelistintfloatr   __static_attributes____classcell__)r   s   @r   r   r      s    $L J +=#&$&&)$)'(#"3i# !# "	#
 !$# "# # # "%# #r!   r   N)	configuration_utilsr   utilsr   
get_loggerr"   loggerr   __all__r   r!   r   <module>r2      s9    4  
		H	%@#' @#F 
r!   